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Abstract

A second strain gradient elasticity theory is proposed based on first and second gradients of the strain tensor. Such a
theory is an extension of first strain gradient elasticity with double stresses. In particular, the strain energy depends on
the strain tensor and on the first and second gradient terms of it. Using a simplified but straightforward version of this
gradient theory, we can connect it with a static version of Eringen’s nonlocal elasticity. For the first time, it is used to
study a screw dislocation and an edge dislocation in second strain gradient elasticity. By means of this second gradient
theory it is possible to eliminate both strain and stress singularities. Another important result is that we obtain nonsin-
gular expressions for the force stresses, double stresses and triple stresses produced by a straight screw dislocation and a
straight edge dislocation. The components of the force stresses and of the triple stresses have maximum values near the
dislocation line and are zero there. On the other hand, the double stresses have maximum values at the dislocation line.
The main feature is that it is possible to eliminate all unphysical singularities of physical fields, e.g., dislocation density
tensor and elastic bend-twist tensor which are still singular in the first strain gradient elasticity.
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1. Introduction

Gradient elasticity theories are generalizations of linear elasticity which include higher-order terms to ac-
count for microstructural or couple stress effects in materials. Strain gradient theories were introduced by
Kroéner (1963), Kroner and Datta (1966), Kroner (1967), Mindlin (1964, 1965), Mindlin and Eshel (1968),
Green and Rivlin (1964a,b) in the sixties. In a strain gradient theory the strain energy depends on the elastic
strain and gradients of the elastic strain. Due to the gradients, such theories contain additional coefficients
with the dimension of a length which are called gradient coefficients. In addition to Cauchy-like stress ten-
sors, hyperstresses (e.g. double stresses and triple stresses) occur in such a framework. But most of all appli-
cations used a first strain gradient theory instead of a second strain gradient elasticity. One reason is that the
second-order strain gradient theory is mathematically more involved and first strain gradient theories are
more simple to handle. A special version of Mindlin’s first strain gradient theory with only one gradient coef-
ficient can be successfully employed to calculate the elastic fields of cracks, dislocations and disclinations.
Gradient elasticity was used to calculate the stress and the strain fields produced by dislocations and discli-
nations (Gutkin and Aifantis, 1999; Gutkin, 2000; Aifantis, 2003; Lazar and Maugin, in press). The gradient
elasticity solutions have no singularities in both the stress and the strain fields. On the other hand, in first
gradient elasticity the double stresses still have singularities at the defect line (Lazar and Maugin, in press).
Thus, one would expect that the double stresses are nonsingular and, on the other hand, the triple stresses are
still singular in the framework of second strain gradient elasticity. But, is this true?

In addition, the stress of such a special (static) gradient elasticity may correspond to the stress in Erin-
gen’s (static) theory of nonlocal elasticity. Then, it is a one to one relationship between the stresses calcu-
lated in gradient elasticity and the stresses in nonlocal elasticity.

Recently, Eringen (1992, 2002) proposed the following equation in nonlocal isotropic elasticity:

[ -4+ 40, = o, (1.1)
where agfl) denotes the stress in ‘classical’ elasticity, and ¢ and y are two positive parameters of nonlocality. But
this equation has not yet been used to find stresses of dislocations and disclinations. Only, the case if y = 0 in
Eq. (1.1) has been used for applications. Thus, solutions of Eq. (1.1) for dislocations, disclinations and cracks
are missing. On the other hand, this author has not calculated the corresponding nonlocal kernels. Of course,
the nonlocal kernel can be the Green function of (1.1). Are the nonlocal kernels singular or nonsingular? What
is the form of the corresponding gradient elasticity? All these points are worth an investigation.

In the meantime, Lazar et al. (in press) have investigated Eq. (1.1) within the theory of nonlocal elasticity
of bi-Helmholtz type. They found smooth nonlocal stress fields for screw and edge dislocations. Neverthe-
less, in nonlocal elasticity the elastic strain and the total displacement vector have the classical form (singu-
larities and discontinuity). Thus, the elastic strain is still singular at the dislocation line. Can a gradient
theory eliminate these singularities? Lazar et al. (in press) calculated the nonlocal kernel of bi-Helmholtz
type and discovered that the kernel is nonsingular in one-, two- and three-dimensions. In addition, they com-
pared the dispersion relation in such a nonlocal theory with the one obtained in models of lattice dynamics
and found, in this way, certain values for the two parameters of nonlocality in terms of lattice parameters.

Some other questions arise in gradient elasticity. Is it possible to regularize all unphysical singularities
which appear? On the one hand, the stresses and strains are nonsingular in a first strain gradient theory
but, on the other hand, the components of the bend-twist tensor and the double stress tensor still have sin-
gularities. In gradient elasticity all higher order stresses (hyperstresses) should be nonsingular. Can we reach
this goal by means of a second strain gradient elasticity or must we consider a triple or even higher gradient
elasticity which would be more complex? In addition, not so much is known about triple stresses.

In the present paper, for the first time, we want to examine dislocations in a static theory of second strain
gradient elasticity with double and triple stresses. We are discussing the general framework of such a
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gradient elasticity theory in greater detail. Such a gradient theory should be very useful for the study of
dislocation core properties.

The plan of the paper is as follows. In Section 2, we derive all basic equations of second strain gradient
elasticity. We give the most general anisotropic constitutive equations and simplified ones where the double
stress is the first gradient of the Cauchy-like stress and the triple stress is given in terms of the second gra-
dient of the force stress tensor. Such simplified second gradient elasticity may be connected to a nonlocal
isotropic elasticity of bi-Helmholtz type as proposed by Eringen. We discuss these relations and calculate
the corresponding nonlocal kernel. In Sections 3 and 4, respectively, we investigate the cases of a screw dis-
location and an edge dislocation in the theory of second strain gradient elasticity in detail. We calculate the
elastic stresses, strain and distortion tensors by using the stress function method. These fields have no sin-
gularities and they are slightly modified in comparison with the first strain gradient results. In addition, we
calculate the double stresses, triple stresses and the dislocation density of a single screw dislocation and a
single edge dislocation. We show that these fields have no singularity within the dislocation core region.
Therefore, it is possible to regularize all elastic fields, which are physical state quantities, including the high-
er stresses within the framework of second strain gradient elasticity. In Section 5, we provide a summary.
Some technical details are given in Appendices A-C.

2. Basic equations
2.1. Kinematics

In elasticity the deformation is described by a displacement vector u;. Elasticity without defects is called
compatible. If defects like dislocations or disclinations are present, one deals with incompatible elasticity.

In the classical theory of dislocations, the total distortion, denoted by ,BiTj, is given as a sum of elastic and
plastic parts

ﬁg = ajui = ﬁij + ﬁ,l;, (2-1)

which is just the gradient of the displacement and, thus, a compatible distortion. The elastic (incompatible)
distortion tensor is defined as (see, e.g., DeWit, 1973; Mura, 1982)

B, = du; — B (2.2)
Here ﬂ; denotes the plastic distortion tensor. On the other hand, the elastic distortion may be rewritten

ﬂz’j = E;; — €0, (2.3)
where the symmetric part of (2.3) defines the (incompatible) elastic strain

1

Ei.i = ﬁ(ij) = 5 (ﬁij + ﬂji) (2-4)

and the elastic rotation vector is defined by
1

Wy = — Eeijkﬁi/* (2.5)
In the case of dislocations, the elastic bend-twist tensor is given by

K[j = ajCU,', (26)

which is just the gradient of the rotation. Therefore, it is compatible. If the plastic distortion is non-zero, the
dislocation density tensor reads

o = €udiBy = —€uiOi By (2.7)
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We see that (2.7) satisfies the continuity conditions (or Bianchi identity)

The strength of a dislocation called Burgers vector is given by
bi(r) = j{ﬁij dx;, (2.9)
C

where C denotes the Burgers circuit around a dislocation.
Gradients of the strain tensor are called hyperstrain. The first gradient of the elastic strain is called the
(elastic) double strain

Nije = O (2.10)
and the triple strain is defined by

Nijrr = 010kEy;. (2.11)
They fulfill the following compatibility conditions:

kO = 0, (2.12)

Emnt€pghOnOgMijpy = 0. (2.13)

If the plastic strain gradient is the gradient of the plastic strain, then such model is called gradient of strain
model (Forest and Sievert, 2003). However, the elastic hyperstresses may be considered as state variables in
the free energy.

2.2. General case of second strain gradient elasticity

For a linear elastic solid, the potential energy function, W, is assumed to be a quadratic function in terms
of strain, first-order gradient strain and second-order gradient strain

Since the strain Ej; is incompatible, we deal with an incompatible strain gradient elasticity which is valid for
defects (dislocations, disclinations) in linear elasticity. Then in this gradient elasticity

ow
ow
Tijk *= OEy) Tijk = Tjiks (2.16)
ow
Tijkl = m, Tijkl = Tjikl,  Tijkl = Tijlk (2.17)

are the response quantities with respect to Ej;, 0,F; and 0,0,E;. 7;3 and 7, can be interpreted as field mo-
menta which are canonically conjugated to the double and triple strains, respectively. Here o;;, possesses 6
independent components, 7(;; has 18 =6 x3 =10+ 8 independent components, and 7, possesses
36 =6x 6 =15+ 15+ 6 independent components.' g is a Cauchy-like stress tensor, whereas 7;; and 7,

! We notice that our Tk s slightly different from Mindlin’s triple stress tensor T due to Ty := (0W)/(0,0,0u;) and
W = W(Oju;), 0x0u;, 0,0, 0;u;). Thus, (s possesses 30 = 15 + 15 independent components. In Mindlin’s gradient theory, the strain and
the distortion are compatible. Therefore, one may call such a gradient theory—a compatible strain gradient theory. Such a compatible
gradient theory is obtained from (2.14) when the plastic strain is zero, EE =0, such that £;; = Ez = 1 (dju; + d;u;). Then the number of
independent components for the triple stress reduces to 30.
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are higher order stress tensors (hyperstresses). Sometimes, 7 and 7;;; are called double and triple stresses,
respectively. The ;3 have the character of double forces (or force dipoles). The first index of 7;; describes
the orientation of the pair of (antiparallel) forces F;, the second index gives the orientation of the lever arm,
Ax;, between the forces and the third index denotes the orientation of the surface on which the forces act.
On the other hand, the 7,3, have the character of triple forces (or force quadrupole) per unit area. The quad-
rupole of forces is a dipole of force dipoles, i.e., a dipole of two moments. The last index of 7, describes the
orientation of the axis of the dipoles of the two moments. The other indices of 7,;; have the same meaning
as for 7.

With Eq. (2.2) the strain energy (2.14) may be written in terms of gradients of the displacement and the
plastic strain according to
OE" a,akE}.;), (2.18)

ij? ij?

W = W (B, 36y, 401y, Y

where E}, = B, denotes the plastic strain.
The force equilibrium condition follows from the variation of 1 with respect to the displacement vector
u;
a/(a,j — akT[jk + a]akf,'jk]) =0. (219)

We do not give here the associated boundary conditions because we consider an infinitely extended med-
ium. The interested reader can find boundary conditions derived in second strain elasticity by Mindlin
(1965), Jaunzemis (1967), Wu (1992), Polizzotto (2003). If we define the total stress tensor

8'1‘/ = 0jj — 6kr,;,k + 616k‘fijk1, (220)
Eq. (2.19) takes the form
ajgfij = 0 (221)

When we add an additional ‘Lagrangian’, which in the compatible case (no plastic distortion) is a null
Lagrangian
W, = —g,‘jE,'j, (222)
to W, we can obtain Eq. (2.20) as variation with respect to the plastic strain Efj
For anisotropic elasticity, W may have the form

1 1 1
W == CimEiEx + = Cijkimn (OkEij) (00E1m) + = Cijktmnpg (0104E i) (040pEmn) + DijrimEij0mExi

2 2 2
+ DijtimnE ij(0,0mE 1) + Dijktmnp (OkE i) (0,00 E ) s (2.23)
where the last three contributions are cross terms. From Eq. (2.23) we obtain the constitutive equations:
0ij = CijmiErs + DijimOmEw + DijiimnOnOmEri, (2.24)
Tijk = DimijiE im + CijitmnOnE tm + DijictinpOpOnk i, (2.25)
Tijet = Dnijit Emn + DnpijiiOpEmn + CijitmnpgOqOpEmn, (2.26)

which agree with the constitutive relations given earlier by Kroner and Datta (1966). Here Cyi, Cijeiuns
Ciitctmnpgs Dijcim> Digcimn and D g, are constitutive coefficients, which satisfy the symmetry relations

Cimt = Cupunyy - Capwy = Cunis
Cijklmn = C(ij)k(lm)m C(ij)k(lm)n = C(lm)k(ij)n = C(ij)n(lm)k = C(Im)n(ij)k7
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Cijkimnpg = Ciipyenymm ea)> — Clig)ktymm)(pg) = Com)k)ij)pa) = Ci)a)mm) ity = C mm) ) i) (k1)
Dijtim = Djyktym,  Dijyktym = Dy ijyms

Dijtmn = Dy itymnys D)ty mn) = Digt) i) (mm)

Dijitmnp = Diipytimynp)s — Diipk(im)np) = Diamkcij)np) = Diigyn(im) p) = Diyp(im) (o) - (2.27)
We notice that the exact meaning of a Cauchy stress is blurred and the direct connection between stress and
strain of the same order is lost. Thus, instead of the Hooke law ¢;; = C;;,Ey; the more complicated relation

(2.24) is valid.
2.3. Exceptional case of second strain gradient elasticity

In order to simplify the higher gradient elasticity and to connect it with the nonlocal isotropic elasticity
proposed by Eringen (1992, 2002), all crossing terms D, Djjicimn and D gy, must be zero and the higher
order stress tensors are just simple gradients of the Cauchy-like stress tensor multiplied by two gradient
coefficients:

0i; = CijuEp, (2.28)
Tijk = szCi,mnGkE,,,n = 8261{0,77 (229)
Tijkl = V4Czj/mnalakEmn = V4alak6;,-. (2.30)

Both ¢ and y are gradient coefficients with the dimension of a length.
Then in such a particular second gradient model, W in (2.14) has the following simple form:

W= % oL + %32(61(‘71:/)(51(&/) + %V4(a/5k0z/)(alakEzf)7 (2.31)
which has been proposed by Lazar and Maugin (in press), Polizzotto (2003). It contains, in particular, the
tensor of elastic moduli and two gradient coefficients, only. It is important to note that the energy (2.31) is
valid for elastic media with double and triple stresses which are simple gradients of the force stress, a rather
peculiar case, we admit. The first contribution in Eq. (2.31) has the same form as in elasticity and the second
and third contributions are the gradient terms which appear in the theory of higher order gradient elasticity.
In the isotropic case, the tensor of elastic moduli reads

Cijie = 200k + u(0p 6 + 06ir), (2.32)

where 1 and u are the Lamé constants. It is important to note that it is not possible to get the constitutive
relation (2.30) together with (2.32) by setting some material parameters in Mindlin’s theory (Mindlin, 1965)
of second gradient of strain to be zero. The reason why is that he used the symmetry ;) instead of 7,
in the isotropic constitutive equation for the triple stress. But, of course, the double stress (2.29) with (2.32)
can be obtained by setting some material coefficients to be zero (see, ¢.g., Lazar and Maugin, in press).
Thus, we point out that the constitutive relation for the triple stresses is a difference to Mindlin’s theory.
However, the formal form of the field equations is the same.
Now combining Egs. (2.29) and (2.30) with (2.19), we obtain

(1 — 82A + '})4AA)ajO'l] = 07 (233)

where 4 is the Laplacian and A4 is the bi-Laplacian. Using Egs. (2.20), (2.29), and (2.30), we obtain the
following inhomogeneous partial differential equation (PDE) of fourth-order for the Cauchy-like stress:

(1-&4+y*44)0; = oy, (2.34)
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where the inhomogeneous part is given by the total stress tensor. If we compare Eq. (1.1) and (2.34), the
total stress tensor g,; may be identified with the ‘classical’ stress tensor offl). Then, Eq. (2.34) has the same
form as the PDE of fourth-order (1.1) proposed by Eringen in nonlocal elasticity (Eringen, 1992, 2002). ¢;;
is a modified stress due to the Laplacian terms in (2.34). The gradient coefficients or parameters of nonlo-
cality may be expressed in a more appropriate form as

e=epa, =74, (2.35)

where a is an internal characteristic length (e.g., lattice parameter, granular distance), and ¢, and 7y, are con-
stants appropriate to each material. Thus, the stresses of this higher gradient elasticity must be equal to the
stresses in Eringen’s nonlocal elasticity. In Lazar et al. (in press), the coefficients ¢, and y, are determined
from dispersion relations in nonlocal elasticity of bi-Helmholtz type and their matching with lattice models.

Alternatively, the PDE of fourth-order (2.34) may be decomposed into a product of two differential
operators of second-order of Helmholtz-type as follows:

(1 =) (1 = SA)ay = oy, (2.36)
where we introduced the auxiliary parameters
2 4
& =%<1 + 1—42—4), (2.37)
2 4
& :;<1 - 1—424) (2.38)
and
& =cl+c, (2.39)
7' =l (2.40)

For this reason, Eq. (2.36) is called bi-Helmholtz-equation. It can be seen that these two coefficients are
real, by examining the discriminant:

7
0< (1 — 48—4), (2.41)
which is necessary to fulfill the condition (2.40). For the two coefficients it holds:

o &> 4y% ¢ # ¢, are real, = £ > 2y
o &t =4* ¢, =, are real, = £ = /2y

Thus, both coefficients ¢; and ¢, have to be real. In the second case, we can reduce the two coefficients to
only one.

The first-order gradient elasticity is obtained from the second-order in the limit y — 0. So, we get ¢ — &’
and ¢3 — 0. In addition, the conditions 34+ 2x >0, >0 and ¢ >0 were proven by Georgiadis et al.
(2004) in order to have stability for the field equation of first strain gradient elasticity. Thus, ¢ and ¢,
are real and not complex in this limit. First-order results can be obtained from the second-order results
in this limit.

The solution of Eq. (2.34) may be rewritten as a convolution integral

o) = [ Gl =)y () doto), (2.42)
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where G(r) denotes the Green function which may be identified with the nonlocal kernel. Therefore, it has
to satisfy

(1 —&4+7*44)G(r) = §(x)3(y) (2.43)

and

(1= i) (1 = 34)G(r) = 6(x)d(») (2.44)

respectively. Eqgs. (2.43) and (2.44) have two-parameter solutions whose behaviour at infinity is dominated
by exponential decay.
For two-dimensional problems, the nonlocal kernel is given by (Appendix A)

G(r) = 217'c a- ! 2 5 [Ko(r/c1) — Ko(r/c2)] (2.45)
and for ¢; — ¢, = -
G(r) = % 24/31( 1(r/7), (2.46)

where K,, denotes the modified Bessel function of the second kind and # is the order of this function. It is
important to note that the new nonlocal kernels (2.45) and (2.46) are nonsingular ones in contrast to the
two-dimensional nonlocal kernel of the Helmholtz equation, G(r) = 1/[2ne*]K(r/e), which also appears
in first strain gradient elasticity (see, e.g., Lazar and Maugin, in press). In fact, at r = 0 the nonlocal kernels
(2.45) and (2.46) have the following maximum values:

Y

=—_— _ |n= = 2.4
21 2 — 3 n(:2 and  G(0) 4n’ (247)

respectively.

In the k-space the nonlocal kernel or Green’s function corresponding to Eq. (2.43) is the inverse of a

polynomial of fourth degree

Gk) = (14K + %), (2.48)
which was originally proposed by Kunin (1983) for the Debye quasicontinuum and also used by Eringen
(1992, 2002) in nonlocal elasticity. But corresponding expressions in the r-space are missing. The nonlocal
kernels of bi-Helmholtz type and the related nonlocal elasticity are discussed more in detail by Lazar et al.
(in press).

Notice that, if we replace —c? by +c} and/or —c} by +c3 in Egs. (2.36) and (2.44), then ¢, and/or ¢,
would be complex and the solutions would be given in terms of the Hankel function ‘“H '(r/c,) and/or
‘”H (r/cz) instead of the modified Bessel function Ky(r/c;) and/or Ky(r/c,). The nonlocal kernel would
possess an oscillatory character even in the far field (Eringen, 1987) and would not be short-ranged. On
the other hand, the solutions for the stresses ¢;; obtained from the inhomogeneous bi-Helmholtz equation
(2.36) would be modified in the far field. The decay of the stresses and strains would be oscillatory.

Using the inverse of the Hooke law with the same material constants for g, and g;; we obtain from Eq.
(2.34) the PDE of fourth-order for the elastic strain

o

(1 —&44y*44)E; = E;;, (2.49)

where E;; denotes the elastic strain tensor calculated in classical elasticity.
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If we use the decomposition (2.3), we obtain the coupled partial differential equation

where u; denotes the displacement field and [fg. is the plastic distortion in classical defect theory (see, e.g.,
DeWit, 1973; Mura, 1982). Thus, if the following equations are fulfilled:

o

(1 =4 +y*44)B,; = By, (2.51)

(1= 4 +7*44) B = B, (2.52)
the equation for the displacement field,?

(1 — &4+ y* AN)u; = u;, (2.53)
is valid for the incompatible case. In the classical theory of defects (dislocations, disclinations) the plastic
distortion and the total displacement are discontinuous fields. Thus, one must solve the Egs. (2.52) and
(2.53) with discontinuities as inhomogeneous parts.

We notice that in second strain gradient elasticity the following inhomogeneous PDE is valid for the dis-
location density tensor:

(1 — 82A —+ '})4AA)OCU = Oofij. (254)
Eq. (2.54) is calculated as the curl of (2.51). In second gradient elasticity, the dislocation density tensor of a
single and straight dislocation is given by

Oﬁij = bi X nA/'G(}"), (255)
where G(r) is the nonlocal kernel (2.45) or (2.46), whereas the dislocation density in classical elasticity reads

iy = b; @ n;6(x)3(), (2.56)

where 7; denotes the direction of the dislocation line.
In order to use the stress function method, the stress ¢;; should fulfill

001 = 0. (2.57)
Using Eq. (2.57), we obtain from (2.19)
6j6kr,-jk = O, 6;6k6jr,-jk1 =0. (258)

It is obvious that (2.58) is satisfied by Eq. (2.57) and the constitutive relations (2.29) and (2.30). We note
that the relation (2.57) is a constraint which specifies the structure of the solution for ;. By the help of such
a constraint we will be able to introduce modified Prandtl and Airy stress functions for the stress in gradient
elasticity.

3. Screw dislocation
In this section, we consider a straight screw dislocation within the theory of second gradient elasticity.

The dislocation is situated in an infinitely extended body. The dislocation line and the Burgers vector of the
screw dislocation coincide with the z-axis.

2 If /J’B = 0 (compatible distortion), the inhomogeneous Helmholtz equation, (1 — e24 + y*44)u; = u;, is obtained without further
assumptions.
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3.1. Solution in classical elasticity

The ‘classical’ expressions of the force stress of a screw dislocation have traditionally been calculated by
using the theory of linear elasticity. The ‘classical’ stress function is given by

pb; I
2n

and r = y/x? + y2. Sometimes, the stress function (3.1) is called the Prandtl stress function. The force stress
is given in terms of the stress function (3.1)

;‘:

nr (3.1)

,ubz y o ,sz X

O, = *ayF = - I ﬁ’ Gzy == axF = 7 }’2 . (32)
It has a nasty 1/r-singularity at the dislocation line.
3.2. Solution in second strain gradient elasticity
We make the following stress function ansatz for the stress tensor:
0, =—0,F, o0, =0.F, (3.3)

which fulfills Eq. (2.57). It has the same form as the stress function ansatz for the classical stress tensor
(3.2). Here F denotes the modified stress function which must be determined. If we substitute (3.3) and
(3.2) into the bi-Helmholtz equation for the stress tensor (2.34), we obtain for the modified stress function
the following inhomogeneous PDE of fourth-order:

_ bb:
o i

(1—&4+y*44)F Inr, (3.4)

where the inhomogeneous part is given by the stress function (3.1). Alternatively, we obtain from the fac-
torized PDE (2.36) a bi-Helmholtz equation for the stress function

pb;

(1—cia)(1 = gA)F = 7 Inr. (3.5)
T
The solution of (3.5) is given by (Appendix B)
b, 1

F = Pz‘n {lnr o a [3Ko(r/e1) — EKo(r/e)] } (3.6)

In the limit ¢; — ¢, Eq. (3.6) simplifies to
_ kb )+
F= o {lnr—i-KO(r//) +2VK1(r/y)}. (3.7)

Because of the bi-Helmholtz equation (3.5), one may call the stress functions (3.6) and (3.7)—the bi-Helm-
holtz modified Prandtl stress functions.
Using Egs. (3.3) and (3.6), the stress tensor reads in Cartesian coordinates

pb: y 1
O = =5 ﬁ{l —2a [c17K 1 (r/c1) — carKy (r/cz)]}, (3.8)

1 2

— b 1{1 — ﬁ [e17K 1 (r/c1) — earKy (r/cz)]} (3.9)

- 2
2n r 5
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and for ¢y — ¢

by ey

O = =5 %3 {1 yKl(r//) 2y2K0(r/y)}, (3.10)
_mbox [ L

Oy =53 {1 yKl(r/y) 2y2K0(r//)}' (3.11)

They are zero at r =0 and have extremum values near the dislocation line. The extremum values depend
strongly on ¢, and ¢;. For ¢;=c;=7, we have: |6.(0,y)| ~0.249ub_/[2my] = 0.352ub./[2nc] at
|y = 2.324y = 1.643¢ and |o.,(x,0)| ~ 0.249ub./[2ny] = 0.352ub./[2n¢] at |x| ~ 2.324y = 1.643¢. Egs. (3.10)
and (3.11) are plotted in Fig. 1. In the limits ¢; — 0 and ¢; — ¢, the stresses which are calculated in first
strain gradient elasticity (Gutkin and Aifantis, 1999; Gutkin, 2000; Lazar, 2003b) or in the corresponding
nonlocal elasticity (Eringen, 1983, 2002) are recovered. The stresses have in first strain elasticity the follow-
ing maxima: |6.(0,y)| ~ 0.399ub./[2ne] at |y| ~ 1.114¢ and |o.,(x,0)| ~ 0.399ub./[2n¢c] at |x| ~ 1.114¢. Only
in the region r/e <3 is a difference between the second-order and the first-order stresses (see Fig. 1). We

(b)

Fig. 1. Stresses of a screw dislocation: (a) .,(0,y) and (b) ¢.,(x,0) (full curves) are given in units of ub./[2n¢]. The full curves, small
dashed curves and dashed curves, respectively, represent the stress fields in gradient elasticity of bi-Helmholtz type, gradient elasticity
of Helmholtz type and classical elasticity.
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notice that the stresses (3.8)—(3.11) agree with the solutions in the nonlocal elasticity of bi-Helmholtz type-
given by Lazar et al. (in press).
Using the inverse of the Hooke law (2.28), the elastic strain tensor reads

b, 1
b= 2 {1 - 2L lerkit/e) - ekir/ea) (3.12)
b, x 1
E., =273 1 —m[cHKl(r/cl) — K (r/ca)] (3.13)
and with ¢; = ¢, =7
_ by r
b= =g 51 Lk~ katef ). (3.14)
b, x 7 7
Ezy_ﬂr_z{l_;Kl(r//)_z_yZKO(r/y)}' (3.15)

Again, they are zero at r = 0 and have extremum values near the dislocation line. The extremum values
depend on ¢, and ¢;. For instance, with ¢; = ¢, we have: |E_(0,y)| ~ 0.249b_/[4ry] = 0.352ub./[27e] at
|y| > 2.324y = 1.643¢ and |E.,(x,0)| ~ 0.249b./[4ny] = 0.352ub./[2ne] at |x| ~ 2.324 y = 1.643¢. The compo-
nents of stress and strain have no singularities. They are zero at r = 0 and have extremum values near the
dislocation line. Also, it is interesting to notice that the strains (3.12) and (3.13) have the same form as the
micropolar distortions y.. and y,. produced by a screw dislocation in gradient micropolar elasticity (see
Lazar and Maugin, 2004a), if we substitute ¢» — 1/k and ¢; — 1/7. In the limit ¢; — 0, we recover in
Egs. (3.12) and (3.13) the strain components calculated in first strain gradient elasticity of Helmholtz type
(Gutkin and Aifantis, 1996, 1999; Lazar and Maugin, in press).

Now we calculate the elastic distortion and dislocation density tensors of the screw dislocation. From the
conditions that the following components of the dislocation density tensor must vanish:

Uy = =0 (Ec: + ) =0, o, =0,(Ep. — ) =0 (3.16)
and for the elastic distortion

p.=0, p.=0, (3.17)
we obtain for the non-vanishing components of the rotation vector

o, =E,, ,=—E.. (3.18)

Consequently, the non-vanishing components of the elastic distortion are given by
ﬁzx = 2EZX’ Bzy = 2EZ)" (319)
Using (2.9) and (3.19), the effective Burgers vector can be calculated as

b.(r) = ?{ (B dx + ﬁzydy) = bz{l -5 1 S [e17K(r/ey) — cerl(r/cz)]}. (3.20)

1 2

It depends on the radius r and the coefficients ¢; and ¢,. For ¢; = ¢, =7, the Burgers vector reads
r 7'2
b-(r) = b-q 1 *;Kl(”/?)*z—yzKo(”/"/) . (3.21)

Eq. (3.21) is plotted in Fig. 2. In fact, we find 5.(0) = 0 and b.(oo) = b. This effective Burgers vector differs
appreciably from the constant value b in the core region from » = 0 up to r ~ 6¢ (see Fig. 2). Therefore, the
core radius is given in quite a natural manner within gradient elasticity. Outside this core region the Burgers
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6 8 10

r/e

Fig. 2. The effective Burgers vector for a screw dislocation: 5.(r)/b. (full curve) and bﬁ” (r)/b. (small dashed curve). The dashed curve
represents the classical component.

vector reaches its constant value. In the limits ¢, — 0 and ¢; — ¢, we obtain in Eq. (3.20) the Burgers vector
calculated in first strain gradient elasticity (Lazar, 2003b)

r
b (r) = bz{l -k, (r/s)}. (3.22)
In Fig. 2, it can be seen that the difference between (3.21) and (3.22) is small.

For the dislocation density tensor of the screw dislocation we calculate

Lap =2 L iky(r/er) = Kolr/e). (3.23)

Oz = —

Tho 2 _ 2
u 2n ¢y — ¢

At r =0 the dislocation density of a single screw dislocation (3.23) has the maximum value

bz 1 C1
= —5— In—. 3.24
"= on -3 e (324)
Thus, it is nonsingular. For ¢; = ¢, =y we obtain
b, r
02z 252_)/3K1(r/y) (325)
At r =0 the dislocation density of a single screw dislocation (3.25) has the maximum value
b,
=55 (3.26)

Therefore, it is nonsingular unlike the dislocation density of a screw dislocation calculated in first strain
gradient elasticity (¢, — 0 and ¢; — ¢)

b
7z 3
o =55 Kolr/e), (3.27)
which is singular at » = 0. Egs. (3.25) and (3.27) are plotted in Fig. 3. It is important to note that the elim-

ination of the singularity at r =0 is a new important feature of second strain gradient elasticity.
3.3. Higher order stresses

In this section, we calculate the higher order stresses, like double and triple stresses, produced by a screw
dislocation.
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Fig. 3. Dislocation density of a single screw dislocation: o.. (full curve) and o)) (small dashed curve) are given in units of b./2neY).

3.3.1. Double stresses
The double stresses are given by

T(zx)y = —826;)}7, T = 82aixF, T = Ty = —Szaiy,F. (328)

The result of the calculation is given in Cartesian coordinates as follows:

ub.e* (y* — x? 1
Tl = o { i 1— o [e1rK (r/c1) — carK (r/c))]

174
21
+5 22 lKolr/e) = Kolr/e)] ¢, (3.29)
rr et — a3
ub.e? (x> —y? 1
T(zx)y = — 27‘5 { ,A 1 — c% — C% [Cll’Kl(}”/Cl) — CQVKl(I”/CQ)]
y 1
+2 s lKalr/e) - Kalr/eo)] | (330)
=
ub.e* xy 1
Ty =~ 4 {2(1 - a-a [e1rKy(r/c1) — cerl(r/cz)]>
1
L Kalrfen) = Ko/}, (331)
-G
and for ¢; = ¢, =7y we obtain
ub.e? (> — x? 7 2 r
T = 5 { 4 1_2_))2[(2(”/“/) +W;K1(’”/"/) 5 (3.32)
b (22— 5 2 ¥ oy
Ty = = 5 { p 1 - 2—))21(2(’”/“/) +W ;Kl(r/'))) ; (3.33)
ub.e* xy & r
Ty =~ % r_4{2(1 —2T/ZK2(r/y)> — 2A—))3K1(r/y) . (3.34)

It is quite interesting to observe that the double stresses are nonsingular in second strain gradient elasticity
unlike the double stresses calculated within the first strain gradient elasticity (Lazar and Maugin, in press)
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and first gradient micropolar elasticity (Lazar and Maugin, 2004a) which are singular at » = 0. In fact, in
second gradient elasticity two components of the double stresses have extremum values and two compo-
nents of the double stresses are zero at the dislocation line. In the case of ¢; = ¢,, we find at r =0:

pb.

T4 fer T Tlex = 0.

Ty = ~Uaxly (3.35)
The components of the double stress (3.32)—(3.34) are plotted in Fig. 4. It is obvious that the main contri-
bution of the double stresses comes from the dislocation core region. In the limit ¢, — 0, Egs. (3.29)—(3.31)
convert to the double stresses in first strain gradient elasticity and, therefore, they become singular.
By means of the double stresses (3.29)—(3.31) and (3.32)—(3.34), we are able to give the expressions for the
elastic bend-twist tensor. Eventually, the elastic bend-twist tensor is given by
1 1 1 1

Kyx = Ky) = w‘f(zy)y, Kipk = EOCZZ. (336)

= 2/182 T(zy))w Kyy - = 2#82 T(zx)y;

LRI
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Fig. 4. Double stress of a screw dislocation: (a) 7(-y)x, (b) —T(zx)y» (€) T(zy)y and (d) 7(-y)y are given in units of ub./[27].
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In the limits ¢, — 0 and ¢; — 1/k, we recover the result given by Lazar (2003b). It is important to note that
all singularities of the elastic bend-twist which occur in first strain gradient elasticity (Lazar, 2003b) and in
micropolar elasticity (Minagawa, 1977) are removed in second strain gradient elasticity. All components of
the double stress tensor and of the elastic bend-twist tensor do not have a singularity and they behave like
1/¢” in the far field just like an electric dipole. Thus, the double force stress may be called dipole force stress.

3.3.2. Triple stresses
For the first time ever, we want to calculate the triple stress produced by a screw dislocation. The triple
stresses are given in terms of the stress function as follows:

T(zy)(xx)

Tzx)(oy) =

4.3
- axxx

4 3
V0, T =

Eventually, we obtain

T(z) ()

L)) =

Ty =

Ty ) =

1
22 .
& —c

1
s

Ta@n)w) =

43
~Ta(e) = 770

wy

_ 403
) y) = 7 axvy

1
— 3x2) (2 -7 .

1

cl— 6 [

pbyt x 5, L, , 1
A5 n(e-r

2.2 1

TV

1 2

L Ki(rfer) — éKl (r/c2)

cl — 6 [

ubyt y [
B 2 W{(y

_LKl(r/cl) _ C—’;Kl(r/cz)

2.2 1

+x°r -3

1
— 3x2) <2—r2 5

1 —G

] — G |G

and for the case of ¢; = ¢, =7y we find

T(zy) ()

T)w) =

T(y)y) =

Ty xy) =

poyt x
T F{(x a
oty o,
 2n ;{(y
uby* x 2
 2r ré{(x

byt y
h 2n ré{(y

2
3y2) (2 — %
— 3x2) (2

_3) <2

, 2
-3 2-=
(25

~ ‘%\ s ~<:N| 3, ,_,

Ks(r/y)

1r
Ky(r/y) +§;K1

B2 3) (2P L Katrfe) ot
[ Ki(r/c)) — —KI(V/CZ)]}

uby*t y [,
C 2n Iz{(y

LK](V/C]) —éKl(l’/Cz)

S lKa(r/e) - Kalr/co)]
|}
LK) - Kot/ )]
|}
L Ka(r/e) - Kalr/eo)
I}

1)+ 5 o)) = okl

(0] ) - P katr /0,

Kalrf )+ oK) ) + 7 ool

3 K| )+ Kl .

(3.38)

(3.39)

(3.40)

(3.41)

(3.42)

(3.43)
(3.44)
(3.45)

(3.46)

The components (3.43)—(3.46) are plotted in Fig. 5. Thus, the triple stresses (3.39)—(3.42) and (3.43)—(3.46)
are zero at the dislocation line and have extremum values near the dislocation line (see Fig. 5). These extre-
mum values are located very close to the dislocation line. It is important to note that the triple stresses of
a screw dislocation which appear in second strain gradient elasticity are nonsingular. In the limit ¢, — 0,



1803

M. Lazar et al. | International Journal of Solids and Structures 43 (2006) 1787-1817

X
LXK
KRB

& %
Q
XX
0 V0K
QORI
¥ ..v".“ﬁ..@‘:\
"
XX

oot
N,

Q5K
RS
00
...@.\

QUK
QRO
SRR
QRO
R

0%
%%
.."..i %,

&»
X

NN TR O
RIS IR
AR AR IXRIEEUE S S N
RRRRKOXRSIIA SIS

ORRKUKKAIIRK XSS SN

e 0 ol e P T\

BRI K XSS

R RRRRRUKKLX KA

N 0000622050, 05 % ).
0000 0% % 200504 .
RRIRAKLRIKK K KX
ORI
R RARRTLR AKX KK
0 00 0 0 %0 200,04
0 00 0090t 2000k
RRRRRRRIILRLLRK
DRRARRLILLHAXAKKL
ORI
R RREORRRRRLLEKY
R RRRILLK
SRRRRRARALLLK
R RRAARKKEK
RRRRARIXXKI
BRRRRRIKAR
RN
2R
R RARRRRRKY
RRRARIRK
LRI
R .ou.u."&&o
IR

(b)

o

XK
X .... 0 --

$...¢..i.......". RRXRKAKS

X

000000 %

0000 0%

RBIEXLXTR

Q8

QA

X

o éo%bb XX

oo
0%

R

X
X
o

hgp‘ X

X

S
X
NS
X

K
g
X :&?....
o
9

"
X
o
X3
s

0
0

)

;.::;’
0
W

35
55

X
R
BRI
R
RRRIRRXAAEN
RN
AR
RRRERXXANRN
AR INANY
KRR
QRRIZRER KRR
RN
QRO
ORI
X0
RO
R0
RERIXS
KRR
RRRRARE
QAR
QR

XS
S

5%
%
XX

X

oS

=
s
22

3
o5

%

%

%%
o
2o

"o}

2K
5
%
5
S5
8
R
R
pSees
R
53

%

X

"}

oo

2

%5
00,
"}

%
&

%5

%
%3

s
%
2%
29%8S
%
R
oS
3
2
=L
S
%S
o
2
oo
3
2
23

X

55
&
5
5
03%e
w03

225
o500
5
559
s
%
%%

S

%3
oS

%

2

%5
%5

%S
o8

3
%S
S
3
53
o
%S

%
5
555%

58

o
55
o2%;

%

%5
25
02203

ooe5e

y/

&
QK

SR8
QR

RO
BRI
XX
R R RBRARORLD
........u.nn.u.u.?
R
R
AR
%
%

LR
R
Lo
KR
o
g

(RN
MUNXAIXILRRL
R
WX ORI
RRRTIRY
\\“&000 SURR
%,

o
8
2%
o
%%
%
2%
L
%
%
R
=

%
%
2
%
.'0 e
LIRL
AR
K
i

2,
%%
22

%o
5%

XK
QR
LRI
RO
RRR%

K

),
2
X

R
[
I"t
A2z
".
2
o
o

R
%
o4

%

%

Ll
L1
o
0%
e
oo
%
5%
2
5
Rz
5
2
2
2
0%

WSS

Iy

1y
X
R
%

2
X2

%%
5%

2
7
/1
7
&
%
%%
X%

2,

7%

2z
777
117
s
2
&K

%

4/

75
7
7
X
X
%
%

s,
2,

2
RERIRRRARY
GRRBRIRAR
RRRRRKLERI
X
IR

5
o
l"
ool
o
L
R,
R

25
25
L%
%
S
N

2

%
%
0

%

R

'}

5
%
R
R

25

02,

%
5
%
L
K
5
R
R
SRR
SRR
XX
5
R
R
553
ooy
o3y
o2oe
L
<R
5%
5

0%
X

X

X%
3

%

boe
togd

52

7
i
R
s
IR
RIS
QRN
RIS
RN
REARRRR
O
X
X

R
.
2R
<
5
5
5
S
3
2
2
S
55
55
b

%
o3
ooy

R
3
X
R
X

555
s

2%

S5
R
5
55

X

0%,

<%

%

0

(d)
) (B) =Tz (€) Ty and (d) 7

its of ub.e/[87].

y)(xy) 4r€ gIven in unr

() Tezpy

Fig. 5. Triple stress of a screw dislocation

he far field just like an electric

lar. In addition, they behave like 1/r° in t
le force stress is a quadrupole force stress.

ingu

Egs. (3.39)—(3.42) become s

1p

the tr

>

quadrupole. Therefore

10n

4. Edge dislocat

the framework of second gradient elasticity.

ion in

ion, we investigate a straight edge dislocat

t

In this sec
The dislocation 1

18.

d the Burgers vector is b, is parallel to the x-ax

1S an

des with the z-ax

1me coinci

[ elasticity

wca

ion in classi

4.1. Solut

ty is given by

ici

lassical elasti

mcC

for a straight edge dislocation

0n

tress funct

iry s

The appropriate A

(4.1)

yinr,
)

b,

U
2n(l —v




1804 M. Lazar et al. | International Journal of Solids and Structures 43 (2006) 1787-1817

where v is the Poisson ratio. In the case of plane strain, the stress function ansatz is given in terms of an Airy
stress function as follows:

O = afyx, Op =0ty O = faiyx, 02 = V(0x + Gyy). (4.2)
Eventually, the ‘classical’ stresses of an edge dislocation read

e _ 200430 e 0P =) -y
xx 1”4 ) W 1”4 ’ xy },,4

where 4 = ub./[2n(1 — v)]. Thus, every component of the stress has a 1/r-singularity at the dislocation line.

o Y
, O, = —2vAr—2, (4.3)

4.2. Solution in second strain gradient elasticity

For the stress in gradient elasticity we use a stress function ansatz for plane strain with the same struc-
ture as in classical elasticity

Oxx = a)zz_yfv Oy = a)zfx 3 Oxy = _aiy 5 0 = V(Uxx + ny)a (44)

where f'is the new stress function occurring in second gradient elasticity. The stress function ansatz (4.4)
satisfies Eq. (2.57). If we use (2.34) and substituting (4.2), (4.1) and (4.4) into it, we obtain an inhomoge-
neous bi-Helmholtz equation for the stress function f:

_ 2 4 _ M
(1—&44y*44)f = 2l = )ylnr (4.5)
and the factorized one
ubr

where the inhomogeneous part is given in terms of the Airy stress function y. The solution of this equation
is given by (see Appendix C, Eq. (C.9):

b, 2(c2 4¢3 2
f= —ﬁy{lnr.y (Cl,,z ) a—a [c Ki(r/c)) — 3K (r/cz)]} (4.7)
and in the limit ¢, — ¢
b, 42 4
7= =5t - Bk - oo @8)

Due to the bi-Helmholtz equation (4.6), one might call the stress functions (4.7) and (4.8)—the bi-
Helmholtz modified Airy stress functions.
If we use the stress function (4.7), we calculate the elastic stress produced by an edge dislocation as

_ by Y 2 2 4(0% + C%) 2 2 2y
Oxx = —m ; {(y +3x%) +T(y —3x7) — Z-a [ci7K 1 (r/c1) — carKy(r/c2)]
CI — [ sz (r/ci) — CZKQ(I"/CQ)}} (4.9)
Gy = "2y 1 5 :’_4{ Clr—; <) (? — 3x%) — C;f 2 [e17K 1 (r/c1) — carKy (r/ca)]
y — 3x ) [ 2K2 (r/c1) —csz(r/cz)}} , (4.10)
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e S oo M e sy - 2 /e - ark /)

Twr = 2n(l —v 2 d—a3
2(x* — 3y?
+7(c% —  [@Katr/en) - C§Kz(r/Cz)]} , (4.11)
ubyv y 1
0, = — 21— ) pr 1 - H[cHKl (r/c1) — carKy(r/ca)] p- (4.12)
The trace of the stress tensor oy, = (0 + 0y, + 0..) is
pbi(14v) y 1
O'kk:_mr_z 1 —H[Cﬂ’]{l(”/ﬁ)—Czi”Kl(”/Cz)] . (4.13)
We find for the elastic strain of an edge dislocation
_ by Y 2 A(ei+c3) 2
Exx_47r(1—v)r2{(l_2v)+r2+ r 0= 3)
2(p” —vr?) 207 -3 ¢, >
_ Y [e1rK(r/c1) — carKy(r/ca)] — @ =) [clKg(r/cl) - CZKQ(I"/CQ)} , (4.14)
_ b, Y 2 At +a), 2
Ey _47r(lv)r_2{(1_2 Jm T A 0o
2(x? —vr?) 20 =3¢ ¢, 2
RPE=3) [e1rK(r/c1) — carK (r/ca)] + 7}’2(0% — 3 [cle(r/cl) — csz(r/cz)} }, (4.15)
b, x 42+ 2)?
E, = m F{(Jg — ) - %(ﬁ —3y%) — = f 2 [e17K 1 (r/c1) — carK (r/c))]
2(x% — 3y?
+—(C% - C%y ) [ciKa(r/c1) = c3Ka(r/c2)] } (4.16)
The dilatation is
b.(1 —2v 1
Ey = — 275(1_\})) r% {1 gkl - cerl(r/cz)]}. (4.17)

Eqgs. (4.9)—(4.17) are nonsingular. In fact, they are zero at » = 0 and have extremum values near the dislo-
cation line. In the limit ¢, — 0, we recover in Eqs. (4.9)—(4.17) the expressions calculated by Gutkin and
Aifantis (1999), Gutkin (2000), Lazar (2003a), Lazar (2003b), Lazar and Maugin (in press) in gradient elas-
ticity of Helmholtz type. In general, the extremum values of the stresses and strains depend on ¢, and ¢;.
The stresses Egs. (4.9)—(4.11) are plotted for ¢; — ¢ in Fig. 6. Here, we do not give the corresponding
formulas in order to avoid too many long equations. But, it is not complicated to calculate the limits
for the Bessel functions as we did it in the previous section. For ¢; = ¢, =7, we have: |0,,(0,y)| ~
0.345ub,/[27(1 — v)y] = 0.489ub./[2n(1 — v)e] at |y| ~ 2.10y = 1.485¢, |6,,(0,y)| = 0.159ub,/[2n(1 — v)y] =
0.225ub,/[2n(1 — v)e] at |y| ~3.102y = 2.193¢, |0,(x,0)| ~ 0.159ub./[2n(1 — v)y] = 0.225ub,/[27(1 — v)e]
at |x| =3.102y =2.193¢, and |o0..(0,y)| = 0.249ub./[n(1 — v)y] = 0.352ub,/[n(1 — v)e] at |y| ~2.324y =
1.643¢. It can be seen that these stresses are smoother than the stresses obtained in first gradient elasticity
of Helmholtz type. In fact, in first gradient elasticity of Helmholtz type the extremum values are:
|0.x(0,)| = 0.547ub,/[2n(1 — v)e] at |y| ~0.996¢, |6,,(0,y)| = 0.260ub,/[2n(1 — v)e] at |y| =~ 1.4%4e,
|0(x,0)| = 0.260ub./[21(1 — v)e] at |x| =~ 1.494¢, and |0..(0,)| =~ 0.399ub./[n(1 — v)e] at |y| ~ 1.114¢. In
addition, it is interesting to note that in the core region E (0, y) is significantly smaller than E, (0, y) similar
as in first gradient elasticity (see, e.g., Gutkin and Aifantis, 1997). They are plotted in Fig. 7.
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Oxx (0> y)

@)

oyy(0,9)

(b)

Oay(@,0)

©)

Fig. 6. Stress of an edge dislocation: (a) 6.,(0,y) and (b) 6,,(0,) () 6y,(x,0) are given in units of ub./[2n(1 — v)&]. The full curves,
small dashed curves and dashed curves, respectively, represent the stress fields in gradient elasticity of bi-Helmholtz type, gradient
elasticity of Helmholtz type and classical elasticity.
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0.3f
0.2
—~
> > 0.1
==
S~—
R R

Fig. 7. Strain components E,(0,y)—(*) and E,(x,0)—(**) are given in units of ub./[4n(1 — v)e] and with v=10.3 and ¢; = ¢,. The
dashed curve represents the classical strain.

The elastic distortion is given by

Bi = Ex, (4.18)
By = Exy — @, (4.19)
ﬁyx = Exy + @, (420)
By = Ey, (4.21)
where the elastic rotation, w., is determined from the conditions:

1
Oy, = O,Ey + Oc(Eyy — ;) = ~ 3 (2ud,w. + (1 —v)0,4f),

1“ (4.22)
oy = 0.Ey — 0,(Ey + ) = ~5 (2uo,w, — (1 —v)o,4f) = 0.

: I

These conditions mean that the edge dislocation has a Burgers vector in x-direction and not in y-direction.
Eventually, we find for the elastic rotation

b, x 1
o= 2 {1l - i/l . (4.23)
The dislocation density tensor of an edge dislocation has the following form:
b, 1
R e g [Ko(r/c1) — Ko(r/c2)]- (4.24)

The effective Burgers vector of an edge dislocation is given by

b.(r) = j{(ﬁxxdx + B, dy) = bx{l — czl—cz [e1rK(r/ey) — cerl(r/cz)]}. (4.25)

17 “2
C

Thus, the dislocation density (4.24) and the effective Burgers vector (4.25) of an edge dislocation have the
same form as the corresponding quantities (3.23) and (3.20) of a screw dislocation. Only the tensor com-
ponents are changed. Therefore, they are smooth and nonsingular even the dislocation density of a single
edge dislocation. In the limits ¢; — 0 and ¢; — 1/k, we recover in Egs. (4.23)(4.25) the formulas given by
Lazar (2003b).
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4.3. Higher order stresses

In this section, we calculate the double and triple stresses produced by an edge dislocation.

4.3.1. Double stresses

The double stresses of an edge dislocation are given in terms of the stress function f'as derivatives of the

third-order according to:

3 3

T(,W)X = gzaxxxf’ T(),V)y = ( = 826)~xyf’
243 23

Ty = €005 Tor = —Tpoy = 80,1,

T = V(T(or + Toa)s
Ty = V(T + Tomp)s
and we obtain
304 =)

pbe 2xy c1 —|— a3

. ; 2xy 2
Ty = 27‘[(1 _ V) 76 {(x 3 ) + 24———= (y X ) (C% _ ) )
12 _ 2.2
(J}—;C)[C%Kz(r/cl) - c%Kz(r/cz)] —|—2x—r[K2(r/c1 —Ky(r/cs) }
01 Cz S Cz
_ b 2 _ 1+Cz G ) _
S = gy e 02 = 30+ 2 e ) Sk ) - ki)
12(x% — 2p2
- [datrfen) - Kl fen] + A Kalrfen) — Katrfes)]
ad—a a-a
ub.e® 1 &+ 2
ey B {(3x4 —6x°y* —)*) — 12% (* = 627y + %)
2 4r2 6 4 —6 2.2 + 4
+ 2 [Katr/er) - Kalr/e) + 8 I (g e)) - GRalrfe)
=G =G
12x%y?
—z—yz [e17K 1 (r/c1) — carKy (r/cz)}}
-G
b.e 1 A+
Towy = h {(x — 6y "’J’) 12 2( 4—6x2y2+y4)
2x2y%r? 6x—6xzz—|—4
2T Katrfer) - Kalrfex)) + S ST I e g - (/e
- Cz =G
2(x® — 3x*y? — 3x%y* +)9)
+ (C% —C%)r [C]Kl(V/Cl) CzK](V/Cz)]}
ubve® xy 1
Tl = p 2(1— Z-2 [e17K(r/c1) — carK (r/cs)]
1
7 — [Ko(r/cl) — K()(I"/Cz)}},
=G

ubve?  (x* —y? 1
Ty = — 1) { = 1 - o [e17K 1 (r/c1) — carK, (r/c2))

1 2

+)}_ %cg [KO(I’/Cl) — Ko(”/cz)]}'

2
recy

[e1K 1 (r/c)) — Ky (r/c2)]

(4.26)

(4.27)

(4.28)

(4.29)

(4.30)

(4.31)

(4.32)

It is important to note that the double stresses of an edge dislocation are smooth and nonsingular in second
strain gradient elasticity unlike the double stresses calculated within first strain gradient elasticity (Lazar



M. Lazar et al. | International Journal of Solids and Structures 43 (2006) 1787-1817 1809
and Maugin, in press) and first gradient micropolar elasticity (Lazar and Maugin, 2004b) which have sin-
gularities at the dislocation line. In fact, the double stresses have extremum values at the defect line or are
zero at the dislocation line. The form of the double stresses of an edge dislocation is more complicated than
that one of a screw dislocation. Nevertheless, (4.32) and (4.31) have a similar form as (3.31) and (3.30). In
the limit ¢; — 0, Eqgs. (4.27)+(4.32) become singular. In addition, the elastic bend-twist of an edge disloca-
tion is calculated as

bx X2 _ yZ

1 ¥ o1
S R _cf—c% [e1rKy(r/c1) — carK i (r/c2)] —ﬁc%—c[Ko(r/cl)—Ko(r/cz)] , (4.33)

)
2

KZX

b, xy 1 1
Ky =57 2 —@[clﬂ(l(r/c])—cerl(r/cz)] —7’2@[1(0(}’/61)—1{0(]’/02)] , (4.34)

which is nonsingular. In the limits ¢; — 0 and ¢; — 1/x, we recover the results given by Lazar (2003b). All
components of the double stress tensor and of the elastic bend-twist tensor of an edge dislocation are non-
singular and they behave like 1/ in the far field just like an electric dipole (see Fig. 8).
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Fig. 8. Double stress of an edge dislocation: (a) —7(,y)y, (b) —T(xx)p» (€) T(xx)x and (d) 7(,y)x are given in units of ub,/[2n(1 — v)].
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4.3.2. Triple stresses
The triple stresses of an edge dislocation are given as derivatives of fourth-order of the stress function f:

T = 700l Tonim) = — T = 70

T = 70y Twm = —Twiom = 70l

T = Ue)w) = ~Tanm) = V'O (435)
Te)) = V(T o) + Tom)))

T 0m) = V(T T Tonom)»

) = V(T ) + Tome)-

The result of the calculation reads

o ,ube4 2-x 4 2.2 4 C%"‘C% 4 ) 4
T () (xy) —271(1_‘))#;{3()6 —6x7y” + )Y —24T(x — 10x*y” 4+ 5y")

3 c c
+ = (x6 —9x*y? — 5 + 5)°) [711(1 (r/ci) — 721(1 (r/cz)}

TS
s [Ekie) - iatrsen) + 2 atrje) - et fe)
+c% I_ZC% (x* = 10x°y* + 5" [c1Ka (r/ 1) — 3K (r/ )] }, (4.36)
Ty () = 27;2]1)"24‘)) i:{(x“ — 143 + 9% — 24%%6% (x* — 10x*y* + 5y
+ ?305 (x® — 9x*)? — 5%y* + 559) [%Kl (r/c1) — c—rz[(l (r/e2)]
-2 ke - SR/

1
+——— (= Ty — 5%+ 39 [Ka(r/cr) — Ka(r/c)]

-G
12
—|—C2 2 (x* — 10x%y* + 5y4)[c%K2(r/cl) — chz(r/cz)]}, (4.37)
176

ubyt 2y 4
Ty () = T2 —v) {3(x4 — 6%y 4 — 24% (5x* — 10x%y* + )

3 c c
+ 3 (5x6 — 5x4y2 — 9)c2y4 —|—y6) [71K1 (r/ci) — 72K1 (r/cz)]

=G
X [r r 6x? (x* — )
b | e - S/ | + R /e - Kot/
12
—1—02 2 (5x* — 10677 +y4) [C%Kz(l"/cl) — c%Kz(r/cz)] }, (4.38)
176
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byt 2y ad+a
Toyy) = DR (9x* — 14x%y* +3*) — 24%(5)&‘ — 102 4+ Y
3 6 4.2 2 4 6\ [€1 C
o (56 = 5 = 9 409 S K (/e - ZKa(r/e)]
ct—¢c3 . p
222 [ r .
Z_a Ll 1(r/cy) - 1(r/cz)}

1
+——— (3% = 5xy? — Tt + 1) [Ka(r/c1) — Ka(r/c2)]

-G
12 4 2.2, M2 2
+c2 2 (5x* — 10x"y" +y )[cle(r/cl) — C2K2(V/C2)} , (4.39)
1~ 6

pby*t 2y ad+a
L)) = m 5 (15x* — 10x%)* — y*) — 24% (5x* — 10x%y* + )

3 c c
+— 5 (5x6 — 5x*? — oyt —|—y6) [71K1 (r/ci) — 72K1(r/02)]

=G
y4’”2 r r 2)’2 4 2.2 4
+ 2 K fe) K (rfer) | 2 (52 4 42y —y)Ka(r/er) — Ka(r/eo)]
i — ¢ e ) =
12 4 2.2 N 2
o (53— 1080 ) [BKa(r/e1) — BKalrfes)] (440)
1 2

and

i =~ 2 2 L2 30 (22 P LKt/ - Kt

ad—-a
1 r r
_y2r2 c% — c% |:CIK1(V/(,‘1) —CzKl(l"/Cz):l }7 (441)
__pbvy? X2 a2 o 1 B
o = 27 {0 = 3 (2 P el - Kot
1 r r
_'_erzm |:C—1K1(I"/Cl) —C—ZKl(I’/Cz):| }7 (442)
_'“beV4X 2 a2 R B
o = 272 2 {07 = 30 (2 P o) - K]
1 r r
4y 7 a L—lKl(r/cl) — C—zKl(r/cz)} } (4.43)

We plotted the components (4.36)—(4.40) in Fig. 9. Even the triple stresses are nonsingular. The components
(4.41)—(4.43) are similar in the form as the components (3.40)—(3.42) of the triple stress of a screw disloca-
tion. The triple stresses behave like 1/ in the far field just like a quadrupole.
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Fig. 9. Triple stress of an edge dislocation: (a) T(xxyxy)> (5) —T(xx)m)s (€) Ty and (d) T(yy) ) are given in units of ub.e/[8n(1 — v)].

5. Conclusions

In this paper, we proposed a theory of second strain gradient elasticity. This theory is a generalization of
first strain gradient elasticity. Such a theory contains higher order stresses like double and triple stresses.
We discussed the general case of second strain gradient elasticity in addition to a simplified one which is
an exceptional version. Such an exceptional case of second strain gradient elasticity is developed and used
in greater detail. This version has two gradient coefficients, only. In such a version the double stress and the
triple stress are given as the first and second gradients of the force stress multiplied by gradient coefficients.

The exceptional version can be connected with Eringen’s nonlocal elasticity of bi-Helmholtz type. There-
fore, the solutions for the force stresses are also solutions in nonlocal elasticity. As a consequence, the stres-
ses of screw and edge dislocations calculated in this paper in the framework of second strain gradient
elasticity of bi-Helmholtz type have the same form as the corresponding stress components found by Lazar
et al. (in press) in the theory of nonlocal elasticity of bi-Helmholtz type. Furthermore, we discussed the new
two-dimensional nonlocal kernel which is the Green function of the bi-Helmholtz equation. This kernel is
nonsingular in contrast to the two-dimensional kernel of the Helmholtz equation.
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Using the special version of second gradient elasticity, new exact analytical solutions for the stress,
strain, distortion, dislocation density and bend-twist tensors of a straight screw dislocation and a straight
edge dislocation have been found. These fields depend on the two gradient coefficients. The solutions have
no singularities unlike the corresponding solutions in classical elasticity. The elimination of the singularities
of the dislocation density and elastic bend-twist tensors is a new feature of second strain gradient elasticity
which is not possible by means of the first strain gradient elasticity. We have used the stress function meth-
od and found the stress functions for screw and edge dislocations. The strain and force stress are zero at
r = 0 and have their extreme values near the dislocation line like in first strain gradient elasticity. The stress
and strain tensors satisfy inhomogeneous bi-Helmholtz equations. The inhomogeneous parts are given
by the classical expressions. We have shown that the new solutions give in the limit from second strain
gradient elasticity of bi-Helmholtz type to first strain gradient elasticity of Helmholtz type the correct
expressions.

In addition, we have investigated the double and triple stresses caused by a screw dislocation and an edge
dislocation. Both quantities are nonsingular. Thus, singularities of the double stresses which appear in first
gradient theory are regularized and even the triple stresses do not have a singularity.

An important result in the framework of second-order gradient theory is that in the cases of screw and
edge dislocations all higher order stresses are nonsingular and it was possible to remove all singularities
which are still present in the first-order gradient theory. Of course, this is an unexpected and surprising re-
sult. Therefore, the second strain gradient theory is self-consistent and gives good physical results. Fortu-
nately, because all physical state quantities are smooth and nonsingular, it is not necessary to use a third
strain gradient theory which will be more complicated than the second strain gradient theory. The isotropic
second strain gradient theory and all the results, which we obtained, may be used for applications in crystals
which are nearly isotropic, e.g., aluminum.
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Appendix A. Green’s function of the bi-Helmholtz equation

In this appendix we want to calculate the two-dimensional Green function of the bi-Helmholtz equation.
The equation to be solved reads

(1 - EA)(1 - EA)G(r) = 5(x)3(y). (A1)
The Helmholtz-operators (1 — c?4) and (1 — ¢34) are commutative. We may set

(1-34)G(r) =g (A2)
and

(1 - A)g = 5(x)3(»). (A3)

For the infinite space, g is given by

1
g:ﬁKO(’”/Cl)a (A4)
1
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which is the two-dimensional Green function of the Helmholtz equation. Now we must solve the following

inhomogeneous Helmholtz equation:

1 2K0(}"/Cl).

_ 2 _—
(1 —c34)G e

To solve (A.5), we make the following ansatz:
G= C]Ko(?’/C]) +H
and obtain an equation for H

1 c? —c?
(1—-A)H = <Fcf - lc—%zcl)Ko(r/cl) —21c3C18(x)d(p).

Now we set
H = CzKo(r/Cz)
and find

1 1
Ci=——-——, C,=-C.
1 7 C% — C% ) 2 1
Finally, the solution of (A.1) is given by

G(r) = 37 =z Kolo/e) = Kolr/ea).

Appendix B. Stress function of the bi-Helmholtz equation for a screw dislocation

We want to solve the following inhomogeneous bi-Helmholtz equation:

ub.

(1 —ciA)(1 — 3A)F = Alnr, A=5—.

To solve (B.1), we set
(1-aA)F =g

and
(1—-ciA)g=Alnr.

The nonsingular solution of (B.3) is given by
g=A{lnr+K(r/c1)}.

Substituting (B.4) into (B.2), we obtain
(1 = MAF = A{lnr + Ko(r/c))}.

In order to solve (B.5), we use the ansatz
F=Cy/Inr+ CKy(r/c1) + Fy

and obtain the following equation for F{;):

2 2
-9

(1 — C%A)F(U = (A — Cl)lnr+ ( — 02 C2>K0(V/C1) +27IC§(C1 — Cz)é(x)é(y)

1

(A.5)

(A.6)

(B.3)

(B.4)

(B.5)

(B.6)
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Now we set
Fy = C3Ko(r/ca)
and get

>
2!

0=(A-C))lnr+ ( - ;Cg Cz)Ko(V/Cl) +2165(Cy — G, — C3)d(x)(y).

1

Thus, we obtain for the coeflicients
c? 2

2 2 - :
=G =G

Ci=4, C,=4
Finally, the solution of (B.1) reads

F = A{lnr + % [ciKo(r/c1) — 3Ko(r/c2)] }

2
=G

1815

(B.8)

(B.10)

(B.11)

It is interesting to note that (B.11) is the fundamental solution of the following PDE (bi-Helmholtz

Laplace equation):
(1 =) (1 — SN AF = 2rA45(x)S(y),

and (B.4) is the fundamental solution of the PDE (Helmholtz Laplace equation)
(1 = 2 A)Ag = 2743(x)3(v),

since 4 In r = 276(x)o(y).

Appendix C. Stress function of the bi-Helmholtz equation for an edge dislocation

Our special interest is the solution of the following inhomogeneous bi-Helmholtz equation:

b,

(1—=cA)(1 = 3A)f = 40,(FFInr), A= "I )

In order to solve (C.1), we use the relations
(1-aA)f =g
and
(1 —cid)g = 40,(r* Inr).
The nonsingular solution of (C.3) reads (see, e.g., Lazar, 2003a)
g=A0,{r Inr +4ci(Inr + Ko(r/c1))}.
If we substitute (C.4) into (C.2), we have
(1 —a3A)f = A3,{r’ Inr + 4ci(Inr + Ko(r/c1))}.
We use the following ansatz:

f=0{rInr+ CiInr+ C:Ko(r/c1) + C3Ko(r/c)}

(B.12)

(B.13)
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and obtain
2 _ 2
0=(4c2 +4 — C)) + (4(:;* = %CQ)KW/CI) + 2162 (Ch + Gy — C3)3(x)3(y), (C.7)
1
which can be satisfied if every coefficient is zero. In this way, we find
2,2 < A
C1=4<Cl+62), C2:4C%—C%’ C3=—4C%_cz. (Cg)
Finally, the solution of (C.1) reads
4
f= Aay{r2 Inr+4(cl +c3)nr+ oo [c1Ko(r/ci) — caKo(r/ca)] } (C.9)
176

In addition, we note that (C.9) is the fundamental solution of the following PDE (bi-Helmholtz bi-Laplace
equation):

(1= A)(1 — 3A)AAf = 87140,6(x)5(») (C.10)
and (C.4) is the fundamental solution of the PDE (Helmholtz bi-Laplace equation)
(1 — cjA)A4g = 8nA4d,5(x)d(y), (C.11)

since AA(r’In r) = 875(x)d(y).
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