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Abstract

A second strain gradient elasticity theory is proposed based on first and second gradients of the strain tensor. Such a
theory is an extension of first strain gradient elasticity with double stresses. In particular, the strain energy depends on
the strain tensor and on the first and second gradient terms of it. Using a simplified but straightforward version of this
gradient theory, we can connect it with a static version of Eringen�s nonlocal elasticity. For the first time, it is used to
study a screw dislocation and an edge dislocation in second strain gradient elasticity. By means of this second gradient
theory it is possible to eliminate both strain and stress singularities. Another important result is that we obtain nonsin-
gular expressions for the force stresses, double stresses and triple stresses produced by a straight screw dislocation and a
straight edge dislocation. The components of the force stresses and of the triple stresses have maximum values near the
dislocation line and are zero there. On the other hand, the double stresses have maximum values at the dislocation line.
The main feature is that it is possible to eliminate all unphysical singularities of physical fields, e.g., dislocation density
tensor and elastic bend-twist tensor which are still singular in the first strain gradient elasticity.
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1. Introduction

Gradient elasticity theories are generalizations of linear elasticity which include higher-order terms to ac-
count for microstructural or couple stress effects in materials. Strain gradient theories were introduced by
Kröner (1963), Kröner and Datta (1966), Kröner (1967), Mindlin (1964, 1965), Mindlin and Eshel (1968),
Green and Rivlin (1964a,b) in the sixties. In a strain gradient theory the strain energy depends on the elastic
strain and gradients of the elastic strain. Due to the gradients, such theories contain additional coefficients
with the dimension of a length which are called gradient coefficients. In addition to Cauchy-like stress ten-
sors, hyperstresses (e.g. double stresses and triple stresses) occur in such a framework. But most of all appli-
cations used a first strain gradient theory instead of a second strain gradient elasticity. One reason is that the
second-order strain gradient theory is mathematically more involved and first strain gradient theories are
more simple to handle. A special version of Mindlin�s first strain gradient theory with only one gradient coef-
ficient can be successfully employed to calculate the elastic fields of cracks, dislocations and disclinations.
Gradient elasticity was used to calculate the stress and the strain fields produced by dislocations and discli-
nations (Gutkin and Aifantis, 1999; Gutkin, 2000; Aifantis, 2003; Lazar andMaugin, in press). The gradient
elasticity solutions have no singularities in both the stress and the strain fields. On the other hand, in first
gradient elasticity the double stresses still have singularities at the defect line (Lazar and Maugin, in press).
Thus, one would expect that the double stresses are nonsingular and, on the other hand, the triple stresses are
still singular in the framework of second strain gradient elasticity. But, is this true?

In addition, the stress of such a special (static) gradient elasticity may correspond to the stress in Erin-
gen�s (static) theory of nonlocal elasticity. Then, it is a one to one relationship between the stresses calcu-
lated in gradient elasticity and the stresses in nonlocal elasticity.

Recently, Eringen (1992, 2002) proposed the following equation in nonlocal isotropic elasticity:
½1� e2Dþ c4D2�rij ¼ rðclÞ
ij ; ð1:1Þ
where rðclÞ
ij denotes the stress in �classical� elasticity, and e and c are two positive parameters of nonlocality. But

this equation has not yet been used to find stresses of dislocations and disclinations. Only, the case if c = 0 in
Eq. (1.1) has been used for applications. Thus, solutions of Eq. (1.1) for dislocations, disclinations and cracks
are missing. On the other hand, this author has not calculated the corresponding nonlocal kernels. Of course,
the nonlocal kernel can be theGreen function of (1.1). Are the nonlocal kernels singular or nonsingular?What
is the form of the corresponding gradient elasticity? All these points are worth an investigation.

In the meantime, Lazar et al. (in press) have investigated Eq. (1.1) within the theory of nonlocal elasticity
of bi-Helmholtz type. They found smooth nonlocal stress fields for screw and edge dislocations. Neverthe-
less, in nonlocal elasticity the elastic strain and the total displacement vector have the classical form (singu-
larities and discontinuity). Thus, the elastic strain is still singular at the dislocation line. Can a gradient
theory eliminate these singularities? Lazar et al. (in press) calculated the nonlocal kernel of bi-Helmholtz
type and discovered that the kernel is nonsingular in one-, two- and three-dimensions. In addition, they com-
pared the dispersion relation in such a nonlocal theory with the one obtained in models of lattice dynamics
and found, in this way, certain values for the two parameters of nonlocality in terms of lattice parameters.

Some other questions arise in gradient elasticity. Is it possible to regularize all unphysical singularities
which appear? On the one hand, the stresses and strains are nonsingular in a first strain gradient theory
but, on the other hand, the components of the bend-twist tensor and the double stress tensor still have sin-
gularities. In gradient elasticity all higher order stresses (hyperstresses) should be nonsingular. Can we reach
this goal by means of a second strain gradient elasticity or must we consider a triple or even higher gradient
elasticity which would be more complex? In addition, not so much is known about triple stresses.

In the present paper, for the first time, we want to examine dislocations in a static theory of second strain
gradient elasticity with double and triple stresses. We are discussing the general framework of such a
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gradient elasticity theory in greater detail. Such a gradient theory should be very useful for the study of
dislocation core properties.

The plan of the paper is as follows. In Section 2, we derive all basic equations of second strain gradient
elasticity. We give the most general anisotropic constitutive equations and simplified ones where the double
stress is the first gradient of the Cauchy-like stress and the triple stress is given in terms of the second gra-
dient of the force stress tensor. Such simplified second gradient elasticity may be connected to a nonlocal
isotropic elasticity of bi-Helmholtz type as proposed by Eringen. We discuss these relations and calculate
the corresponding nonlocal kernel. In Sections 3 and 4, respectively, we investigate the cases of a screw dis-
location and an edge dislocation in the theory of second strain gradient elasticity in detail. We calculate the
elastic stresses, strain and distortion tensors by using the stress function method. These fields have no sin-
gularities and they are slightly modified in comparison with the first strain gradient results. In addition, we
calculate the double stresses, triple stresses and the dislocation density of a single screw dislocation and a
single edge dislocation. We show that these fields have no singularity within the dislocation core region.
Therefore, it is possible to regularize all elastic fields, which are physical state quantities, including the high-
er stresses within the framework of second strain gradient elasticity. In Section 5, we provide a summary.
Some technical details are given in Appendices A–C.
2. Basic equations

2.1. Kinematics

In elasticity the deformation is described by a displacement vector ui. Elasticity without defects is called
compatible. If defects like dislocations or disclinations are present, one deals with incompatible elasticity.

In the classical theory of dislocations, the total distortion, denoted by bT
ij, is given as a sum of elastic and

plastic parts
bT
ij ¼ ojui ¼ bij þ bP

ij; ð2:1Þ

which is just the gradient of the displacement and, thus, a compatible distortion. The elastic (incompatible)
distortion tensor is defined as (see, e.g., DeWit, 1973; Mura, 1982)
bij ¼ ojui � bP
ij. ð2:2Þ
Here bP
ij denotes the plastic distortion tensor. On the other hand, the elastic distortion may be rewritten
bij ¼ Eij � �ijkxk; ð2:3Þ

where the symmetric part of (2.3) defines the (incompatible) elastic strain
Eij ¼ bðijÞ ¼
1

2
ðbij þ bjiÞ ð2:4Þ
and the elastic rotation vector is defined by
xk ¼ � 1

2
�ijkbij. ð2:5Þ
In the case of dislocations, the elastic bend-twist tensor is given by
jij ¼ ojxi; ð2:6Þ

which is just the gradient of the rotation. Therefore, it is compatible. If the plastic distortion is non-zero, the
dislocation density tensor reads
aij ¼ �jklokbil ¼ ��jklokb
P
il. ð2:7Þ
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We see that (2.7) satisfies the continuity conditions (or Bianchi identity)
1 We
W =W

the dis
gradie
indepe
ojaij ¼ 0. ð2:8Þ

The strength of a dislocation called Burgers vector is given by
biðrÞ ¼
I
C

bij dxj; ð2:9Þ
where C denotes the Burgers circuit around a dislocation.
Gradients of the strain tensor are called hyperstrain. The first gradient of the elastic strain is called the

(elastic) double strain
gijk ¼ okEij ð2:10Þ
and the triple strain is defined by
gijkl ¼ olokEij. ð2:11Þ
They fulfill the following compatibility conditions:
�mlkolgijk ¼ 0; ð2:12Þ
�mnl�pqkonoqgijkl ¼ 0. ð2:13Þ
If the plastic strain gradient is the gradient of the plastic strain, then such model is called gradient of strain
model (Forest and Sievert, 2003). However, the elastic hyperstresses may be considered as state variables in
the free energy.

2.2. General case of second strain gradient elasticity

For a linear elastic solid, the potential energy function,W, is assumed to be a quadratic function in terms
of strain, first-order gradient strain and second-order gradient strain
W ¼ W ðEij; okEij; olokEijÞ. ð2:14Þ

Since the strain Eij is incompatible, we deal with an incompatible strain gradient elasticity which is valid for
defects (dislocations, disclinations) in linear elasticity. Then in this gradient elasticity
rij :¼
oW
oEij

; rij ¼ rji; ð2:15Þ

sijk :¼
oW

oðokEijÞ
; sijk ¼ sjik; ð2:16Þ

sijkl :¼
oW

oðolokEijÞ
; sijkl ¼ sjikl; sijkl ¼ sijlk ð2:17Þ
are the response quantities with respect to Eij, okEij and olokEij. sijk and sijkl can be interpreted as field mo-
menta which are canonically conjugated to the double and triple strains, respectively. Here r(ij) possesses 6
independent components, s(ij)k has 18 = 6 · 3 = 10 + 8 independent components, and s(ij)(kl) possesses
36 = 6 · 6 = 15 + 15 + 6 independent components.1 rij is a Cauchy-like stress tensor, whereas sijk and sijkl
notice that our s(ij)(kl) is slightly different from Mindlin�s triple stress tensor si(jkl) due to si(jkl) :¼ (oW)/(olokojui) and
(o(jui),okojui,olokojui). Thus, si(jkl) possesses 30 = 15 + 15 independent components. In Mindlin�s gradient theory, the strain and
tortion are compatible. Therefore, one may call such a gradient theory—a compatible strain gradient theory. Such a compatible
nt theory is obtained from (2.14) when the plastic strain is zero, EP

ij ¼ 0, such that Eij � ET
ij ¼ 1

2 ðojui þ oiujÞ. Then the number of
ndent components for the triple stress reduces to 30.
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are higher order stress tensors (hyperstresses). Sometimes, sijk and sijkl are called double and triple stresses,
respectively. The sijk have the character of double forces (or force dipoles). The first index of sijk describes
the orientation of the pair of (antiparallel) forces Fi, the second index gives the orientation of the lever arm,
Dxj, between the forces and the third index denotes the orientation of the surface on which the forces act.
On the other hand, the sijkl have the character of triple forces (or force quadrupole) per unit area. The quad-
rupole of forces is a dipole of force dipoles, i.e., a dipole of two moments. The last index of sijkl describes the
orientation of the axis of the dipoles of the two moments. The other indices of sijkl have the same meaning
as for sijk.

With Eq. (2.2) the strain energy (2.14) may be written in terms of gradients of the displacement and the
plastic strain according to
W ¼ W oðjuiÞ; okoðjuiÞ; okoloðjuiÞ;EP
ij; okE

P
ij; olokE

P
ij

� �
; ð2:18Þ
where EP
ij ¼ bP

ðijÞ denotes the plastic strain.
The force equilibrium condition follows from the variation of W with respect to the displacement vector

ui:
ojðrij � oksijk þ oloksijklÞ ¼ 0. ð2:19Þ

We do not give here the associated boundary conditions because we consider an infinitely extended med-
ium. The interested reader can find boundary conditions derived in second strain elasticity by Mindlin
(1965), Jaunzemis (1967), Wu (1992), Polizzotto (2003). If we define the total stress tensor
r
�
ij ¼ rij � oksijk þ oloksijkl; ð2:20Þ
Eq. (2.19) takes the form
ojr
�
ij ¼ 0. ð2:21Þ
When we add an additional �Lagrangian�, which in the compatible case (no plastic distortion) is a null
Lagrangian
W 0 ¼ �r
�
ijEij; ð2:22Þ
to W, we can obtain Eq. (2.20) as variation with respect to the plastic strain EP
ij.

For anisotropic elasticity, W may have the form
W ¼ 1

2
CijklEijEkl þ

1

2
CijklmnðokEijÞðonElmÞ þ

1

2
CijklmnpqðolokEijÞðoqopEmnÞ þ DijklmEijomEkl

þ DijklmnEijðonomEklÞ þ DijklmnpðokEijÞðoponElmÞ; ð2:23Þ
where the last three contributions are cross terms. From Eq. (2.23) we obtain the constitutive equations:
rij ¼ CijklEkl þ DijklmomEkl þ DijklmnonomEkl; ð2:24Þ
sijk ¼ DlmijkElm þ CijklmnonElm þ DijklmnpoponElm; ð2:25Þ
sijkl ¼ DmnijklEmn þ DmnpijklopEmn þ CijklmnpqoqopEmn; ð2:26Þ
which agree with the constitutive relations given earlier by Kröner and Datta (1966). Here Cijkl, Cijklmn,
Cijklmnpq, Dijklm, Dijklmn and Dijklmnp are constitutive coefficients, which satisfy the symmetry relations
Cijkl � CðijÞðklÞ; CðijÞðklÞ ¼ CðklÞðijÞ;

Cijklmn � CðijÞkðlmÞn; CðijÞkðlmÞn ¼ CðlmÞkðijÞn ¼ CðijÞnðlmÞk ¼ CðlmÞnðijÞk;



1792 M. Lazar et al. / International Journal of Solids and Structures 43 (2006) 1787–1817
Cijklmnpq � CðijÞðklÞðmnÞðpqÞ; CðijÞðklÞðmnÞðpqÞ ¼ CðmnÞðklÞðijÞðpqÞ ¼ CðijÞðpqÞðmnÞðklÞ ¼ CðmnÞðpqÞðijÞðklÞ;

Dijklm � DðijÞðklÞm; DðijÞðklÞm ¼ DðklÞðijÞm;

Dijklmn � DðijÞðklÞðmnÞ; DðijÞðklÞðmnÞ ¼ DðklÞðijÞðmnÞ;

Dijklmnp � DðijÞkðlmÞðnpÞ; DðijÞkðlmÞðnpÞ ¼ DðlmÞkðijÞðnpÞ ¼ DðijÞnðlmÞðkpÞ ¼ DðijÞpðlmÞðknÞ. ð2:27Þ
We notice that the exact meaning of a Cauchy stress is blurred and the direct connection between stress and
strain of the same order is lost. Thus, instead of the Hooke law rij = CijklEkl the more complicated relation
(2.24) is valid.

2.3. Exceptional case of second strain gradient elasticity

In order to simplify the higher gradient elasticity and to connect it with the nonlocal isotropic elasticity
proposed by Eringen (1992, 2002), all crossing terms Dijklm, Dijklmn and Dijklmnp must be zero and the higher
order stress tensors are just simple gradients of the Cauchy-like stress tensor multiplied by two gradient
coefficients:
rij ¼ CijklEkl; ð2:28Þ
sijk ¼ e2CijmnokEmn ¼ e2okrij; ð2:29Þ
sijkl ¼ c4CijmnolokEmn ¼ c4olokrij. ð2:30Þ
Both e and c are gradient coefficients with the dimension of a length.
Then in such a particular second gradient model, W in (2.14) has the following simple form:
W ¼ 1

2
rijEij þ

1

2
e2ðokrijÞðokEijÞ þ

1

2
c4ðolokrijÞðolokEijÞ; ð2:31Þ
which has been proposed by Lazar and Maugin (in press), Polizzotto (2003). It contains, in particular, the
tensor of elastic moduli and two gradient coefficients, only. It is important to note that the energy (2.31) is
valid for elastic media with double and triple stresses which are simple gradients of the force stress, a rather
peculiar case, we admit. The first contribution in Eq. (2.31) has the same form as in elasticity and the second
and third contributions are the gradient terms which appear in the theory of higher order gradient elasticity.
In the isotropic case, the tensor of elastic moduli reads
Cijkl ¼ kdijdkl þ lðdikdjl þ djkdilÞ; ð2:32Þ
where k and l are the Lamé constants. It is important to note that it is not possible to get the constitutive
relation (2.30) together with (2.32) by setting some material parameters in Mindlin�s theory (Mindlin, 1965)
of second gradient of strain to be zero. The reason why is that he used the symmetry si(ijk) instead of s(ij)(kl)
in the isotropic constitutive equation for the triple stress. But, of course, the double stress (2.29) with (2.32)
can be obtained by setting some material coefficients to be zero (see, e.g., Lazar and Maugin, in press).
Thus, we point out that the constitutive relation for the triple stresses is a difference to Mindlin�s theory.
However, the formal form of the field equations is the same.

Now combining Eqs. (2.29) and (2.30) with (2.19), we obtain
ð1� e2Dþ c4DDÞojrij ¼ 0; ð2:33Þ

where D is the Laplacian and DD is the bi-Laplacian. Using Eqs. (2.20), (2.29), and (2.30), we obtain the
following inhomogeneous partial differential equation (PDE) of fourth-order for the Cauchy-like stress:
1� e2Dþ c4DD
� �

rij ¼ r
�
ij; ð2:34Þ
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where the inhomogeneous part is given by the total stress tensor. If we compare Eq. (1.1) and (2.34), the
total stress tensor r

�
ij may be identified with the �classical� stress tensor rðclÞ

ij . Then, Eq. (2.34) has the same
form as the PDE of fourth-order (1.1) proposed by Eringen in nonlocal elasticity (Eringen, 1992, 2002). rij
is a modified stress due to the Laplacian terms in (2.34). The gradient coefficients or parameters of nonlo-
cality may be expressed in a more appropriate form as
e ¼ e0a; c ¼ c0a; ð2:35Þ
where a is an internal characteristic length (e.g., lattice parameter, granular distance), and e0 and c0 are con-
stants appropriate to each material. Thus, the stresses of this higher gradient elasticity must be equal to the
stresses in Eringen�s nonlocal elasticity. In Lazar et al. (in press), the coefficients e0 and c0 are determined
from dispersion relations in nonlocal elasticity of bi-Helmholtz type and their matching with lattice models.

Alternatively, the PDE of fourth-order (2.34) may be decomposed into a product of two differential
operators of second-order of Helmholtz-type as follows:
ð1� c21DÞð1� c22DÞrij ¼ r
�
ij; ð2:36Þ
where we introduced the auxiliary parameters
c21 ¼
e2

2
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4

c4

e4

r !
; ð2:37Þ

c22 ¼
e2

2
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4

c4

e4

r !
ð2:38Þ
and
e2 ¼ c21 þ c22; ð2:39Þ
c4 ¼ c21c

2
2. ð2:40Þ
For this reason, Eq. (2.36) is called bi-Helmholtz-equation. It can be seen that these two coefficients are
real, by examining the discriminant:
0 6 1� 4
c4

e4

� �
; ð2:41Þ
which is necessary to fulfill the condition (2.40). For the two coefficients it holds:

• e4 > 4c4, c1 5 c2 are real, ) e >
ffiffiffi
2

p
c

• e4 = 4c4, c1 = c2 are real, ) e ¼
ffiffiffi
2

p
c.

Thus, both coefficients c1 and c2 have to be real. In the second case, we can reduce the two coefficients to
only one.

The first-order gradient elasticity is obtained from the second-order in the limit c ! 0. So, we get c21 ! e2

and c22 ! 0. In addition, the conditions 3k + 2l > 0, l > 0 and e2 > 0 were proven by Georgiadis et al.
(2004) in order to have stability for the field equation of first strain gradient elasticity. Thus, e and c1
are real and not complex in this limit. First-order results can be obtained from the second-order results
in this limit.

The solution of Eq. (2.34) may be rewritten as a convolution integral
rijðrÞ ¼
Z
V
Gðr � r0Þr� ijðr0Þdvðr0Þ; ð2:42Þ
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where G(r) denotes the Green function which may be identified with the nonlocal kernel. Therefore, it has
to satisfy
1� e2Dþ c4DD
� �

GðrÞ ¼ dðxÞdðyÞ ð2:43Þ
and
1� c21D
� �

1� c22D
� �

GðrÞ ¼ dðxÞdðyÞ ð2:44Þ
respectively. Eqs. (2.43) and (2.44) have two-parameter solutions whose behaviour at infinity is dominated
by exponential decay.

For two-dimensional problems, the nonlocal kernel is given by (Appendix A)
GðrÞ ¼ 1

2p
1

c21 � c22
½K0ðr=c1Þ � K0ðr=c2Þ� ð2:45Þ
and for c1 ! c2 = c:
GðrÞ ¼ 1

2p
r
2c3

K1ðr=cÞ; ð2:46Þ
where Kn denotes the modified Bessel function of the second kind and n is the order of this function. It is
important to note that the new nonlocal kernels (2.45) and (2.46) are nonsingular ones in contrast to the
two-dimensional nonlocal kernel of the Helmholtz equation, G(r) = 1/[2pe2]K0(r/e), which also appears
in first strain gradient elasticity (see, e.g., Lazar and Maugin, in press). In fact, at r = 0 the nonlocal kernels
(2.45) and (2.46) have the following maximum values:
Gð0Þ ¼ 1

2p
1

c21 � c22
ln
c1
c2

and Gð0Þ ¼ c
4p

; ð2:47Þ
respectively.
In the k-space the nonlocal kernel or Green�s function corresponding to Eq. (2.43) is the inverse of a

polynomial of fourth degree
GðkÞ ¼ 1þ e2k2 þ c4k4
� ��1

; ð2:48Þ
which was originally proposed by Kunin (1983) for the Debye quasicontinuum and also used by Eringen
(1992, 2002) in nonlocal elasticity. But corresponding expressions in the r-space are missing. The nonlocal
kernels of bi-Helmholtz type and the related nonlocal elasticity are discussed more in detail by Lazar et al.
(in press).

Notice that, if we replace �c21 by þc21 and/or �c22 by þc22 in Eqs. (2.36) and (2.44), then c1 and/or c2
would be complex and the solutions would be given in terms of the Hankel function ip

2
H ð1Þ

0 ðr=c1Þ and/or
ip
2
H ð1Þ

0 ðr=c2Þ instead of the modified Bessel function K0(r/c1) and/or K0(r/c2). The nonlocal kernel would
possess an oscillatory character even in the far field (Eringen, 1987) and would not be short-ranged. On
the other hand, the solutions for the stresses rij obtained from the inhomogeneous bi-Helmholtz equation
(2.36) would be modified in the far field. The decay of the stresses and strains would be oscillatory.

Using the inverse of the Hooke law with the same material constants for rij and r
�
ij we obtain from Eq.

(2.34) the PDE of fourth-order for the elastic strain
1� e2Dþ c4DD
� �

Eij ¼ E
�
ij; ð2:49Þ
where E
�
ij denotes the elastic strain tensor calculated in classical elasticity.
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If we use the decomposition (2.3), we obtain the coupled partial differential equation
2 If b
assump
1� e2Dþ c4DD
� �

oðiujÞ � bP
ðijÞ

h i
¼ oðiu

�
jÞ � b

�
P
ðijÞ; ð2:50Þ
where u
�
i denotes the displacement field and b

�
P
ij is the plastic distortion in classical defect theory (see, e.g.,

DeWit, 1973; Mura, 1982). Thus, if the following equations are fulfilled:
1� e2Dþ c4DD
� �

bij ¼ b
�
ij; ð2:51Þ

1� e2Dþ c4DD
� �

bP
ij ¼ b

�
P
ij; ð2:52Þ
the equation for the displacement field,2
ð1� e2Dþ c4DDÞui ¼ u
�
i; ð2:53Þ
is valid for the incompatible case. In the classical theory of defects (dislocations, disclinations) the plastic
distortion and the total displacement are discontinuous fields. Thus, one must solve the Eqs. (2.52) and
(2.53) with discontinuities as inhomogeneous parts.

We notice that in second strain gradient elasticity the following inhomogeneous PDE is valid for the dis-
location density tensor:
ð1� e2Dþ c4DDÞaij ¼ a
�
ij. ð2:54Þ
Eq. (2.54) is calculated as the curl of (2.51). In second gradient elasticity, the dislocation density tensor of a
single and straight dislocation is given by
aij ¼ bi � njGðrÞ; ð2:55Þ

where G(r) is the nonlocal kernel (2.45) or (2.46), whereas the dislocation density in classical elasticity reads
a
�
ij ¼ bi � njdðxÞdðyÞ; ð2:56Þ
where nj denotes the direction of the dislocation line.
In order to use the stress function method, the stress rij should fulfill
ojrij ¼ 0. ð2:57Þ

Using Eq. (2.57), we obtain from (2.19)
ojoksijk ¼ 0; olokojsijkl ¼ 0. ð2:58Þ

It is obvious that (2.58) is satisfied by Eq. (2.57) and the constitutive relations (2.29) and (2.30). We note
that the relation (2.57) is a constraint which specifies the structure of the solution for rij. By the help of such
a constraint we will be able to introduce modified Prandtl and Airy stress functions for the stress in gradient
elasticity.
3. Screw dislocation

In this section, we consider a straight screw dislocation within the theory of second gradient elasticity.
The dislocation is situated in an infinitely extended body. The dislocation line and the Burgers vector of the
screw dislocation coincide with the z-axis.
P
ij ¼ 0 (compatible distortion), the inhomogeneous Helmholtz equation, ð1� e2Dþ c4DDÞui ¼ u

�
i, is obtained without further

tions.
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3.1. Solution in classical elasticity

The �classical� expressions of the force stress of a screw dislocation have traditionally been calculated by
using the theory of linear elasticity. The �classical� stress function is given by
F
�
¼ lbz

2p
ln r ð3:1Þ
and r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. Sometimes, the stress function (3.1) is called the Prandtl stress function. The force stress

is given in terms of the stress function (3.1)
r
�
zx ¼ �oy F

�
¼ � lbz

2p
y
r2
; r

�
zy ¼ ox F

�
¼ lbz

2p
x
r2
. ð3:2Þ
It has a nasty 1/r-singularity at the dislocation line.

3.2. Solution in second strain gradient elasticity

We make the following stress function ansatz for the stress tensor:
rzx ¼ �oyF ; rzy ¼ oxF ; ð3:3Þ
which fulfills Eq. (2.57). It has the same form as the stress function ansatz for the classical stress tensor
(3.2). Here F denotes the modified stress function which must be determined. If we substitute (3.3) and
(3.2) into the bi-Helmholtz equation for the stress tensor (2.34), we obtain for the modified stress function
the following inhomogeneous PDE of fourth-order:
1� e2Dþ c4DD
� �

F ¼ lbz
2p

ln r; ð3:4Þ
where the inhomogeneous part is given by the stress function (3.1). Alternatively, we obtain from the fac-
torized PDE (2.36) a bi-Helmholtz equation for the stress function
1� c21D
� �

1� c22D
� �

F ¼ lbz
2p

ln r. ð3:5Þ
The solution of (3.5) is given by (Appendix B)
F ¼ lbz
2p

ln r þ 1

c21 � c22
c21K0ðr=c1Þ � c22K0ðr=c2Þ
� 	
 �

. ð3:6Þ
In the limit c1 ! c2, Eq. (3.6) simplifies to
F ¼ lbz
2p

ln r þ K0ðr=cÞ þ
r
2c

K1ðr=cÞ

 �

. ð3:7Þ
Because of the bi-Helmholtz equation (3.5), one may call the stress functions (3.6) and (3.7)—the bi-Helm-
holtz modified Prandtl stress functions.

Using Eqs. (3.3) and (3.6), the stress tensor reads in Cartesian coordinates
rzx ¼ � lbz
2p

y
r2

1� 1

c21 � c22
c1rK1ðr=c1Þ � c2rK1ðr=c2Þ½ �


 �
; ð3:8Þ

rzy ¼
lbz
2p

x
r2

1� 1

c21 � c22
c1rK1ðr=c1Þ � c2rK1ðr=c2Þ½ �


 �
ð3:9Þ
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and for c1 ! c2
Fig. 1.
dashed
of Hel
rzx ¼ � lbz
2p

y
r2

1� r
c
K1ðr=cÞ �

r2

2c2
K0ðr=cÞ


 �
; ð3:10Þ

rzy ¼
lbz
2p

x
r2

1� r
c
K1ðr=cÞ �

r2

2c2
K0ðr=cÞ


 �
. ð3:11Þ
They are zero at r = 0 and have extremum values near the dislocation line. The extremum values depend
strongly on c2 and c1. For c1 = c2 = c, we have: jrzx(0,y)j ’ 0.249lbz/[2pc] = 0.352lbz/[2pe] at
jyj ’ 2.324c = 1.643e and jrzy(x, 0)j ’ 0.249lbz/[2pc] = 0.352lbz/[2pe] at jxj ’ 2.324c = 1.643e. Eqs. (3.10)
and (3.11) are plotted in Fig. 1. In the limits c2 ! 0 and c1 ! e, the stresses which are calculated in first
strain gradient elasticity (Gutkin and Aifantis, 1999; Gutkin, 2000; Lazar, 2003b) or in the corresponding
nonlocal elasticity (Eringen, 1983, 2002) are recovered. The stresses have in first strain elasticity the follow-
ing maxima: jrzx(0,y)j ’ 0.399lbz/[2pe] at jyj ’ 1.114e and jrzy(x, 0)j ’ 0.399lbz/[2pe] at jxj ’ 1.114e. Only
in the region r/e < 3 is a difference between the second-order and the first-order stresses (see Fig. 1). We
(a)

(b)

Stresses of a screw dislocation: (a) rzx(0,y) and (b) rzy(x, 0) (full curves) are given in units of lbz/[2pe]. The full curves, small
curves and dashed curves, respectively, represent the stress fields in gradient elasticity of bi-Helmholtz type, gradient elasticity

mholtz type and classical elasticity.
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notice that the stresses (3.8)–(3.11) agree with the solutions in the nonlocal elasticity of bi-Helmholtz type-
given by Lazar et al. (in press).

Using the inverse of the Hooke law (2.28), the elastic strain tensor reads
Ezx ¼ � bz
4p

y
r2

1� 1

c21 � c22
c1rK1ðr=c1Þ � c2rK1ðr=c2Þ½ �


 �
; ð3:12Þ

Ezy ¼
bz
4p

x
r2

1� 1

c21 � c22
c1rK1ðr=c1Þ � c2rK1ðr=c2Þ½ �


 �
ð3:13Þ
and with c1 = c2 = c
Ezx ¼ � bz
4p

y
r2

1� r
c
K1ðr=cÞ �

r2

2c2
K0ðr=cÞ


 �
; ð3:14Þ

Ezy ¼
bz
4p

x
r2

1� r
c
K1ðr=cÞ �

r2

2c2
K0ðr=cÞ


 �
. ð3:15Þ
Again, they are zero at r = 0 and have extremum values near the dislocation line. The extremum values
depend on c2 and c1. For instance, with c1 = c2 we have: jEzx(0,y)j ’ 0.249bz/[4pc] = 0.352lbz/[2pe] at
jyj ’ 2.324c = 1.643e and jEzy(x, 0)j ’ 0.249bz/[4pc] = 0.352lbz/[2pe] at jxj ’ 2.324 c = 1.643e. The compo-
nents of stress and strain have no singularities. They are zero at r = 0 and have extremum values near the
dislocation line. Also, it is interesting to notice that the strains (3.12) and (3.13) have the same form as the
micropolar distortions cxz and cyz produced by a screw dislocation in gradient micropolar elasticity (see
Lazar and Maugin, 2004a), if we substitute c2 ! 1/j and c1 ! 1/s. In the limit c2 ! 0, we recover in
Eqs. (3.12) and (3.13) the strain components calculated in first strain gradient elasticity of Helmholtz type
(Gutkin and Aifantis, 1996, 1999; Lazar and Maugin, in press).

Now we calculate the elastic distortion and dislocation density tensors of the screw dislocation. From the
conditions that the following components of the dislocation density tensor must vanish:
axy ¼ �ox Exz þ xy

� �
� 0; ayx ¼ oy Eyz � xx

� �
� 0 ð3:16Þ
and for the elastic distortion
bxz � 0; byz � 0; ð3:17Þ
we obtain for the non-vanishing components of the rotation vector
xx ¼ Eyz; xy ¼ �Exz. ð3:18Þ

Consequently, the non-vanishing components of the elastic distortion are given by
bzx ¼ 2Ezx; bzy ¼ 2Ezy . ð3:19Þ
Using (2.9) and (3.19), the effective Burgers vector can be calculated as
bzðrÞ ¼
I
C

bzx dxþ bzy dy
� �

¼ bz 1� 1

c21 � c22
c1rK1ðr=c1Þ � c2rK1ðr=c2Þ½ �


 �
. ð3:20Þ
It depends on the radius r and the coefficients c1 and c2. For c1 = c2 = c, the Burgers vector reads
bzðrÞ ¼ bz 1� r
c
K1ðr=cÞ �

r2

2c2
K0ðr=cÞ


 �
. ð3:21Þ
Eq. (3.21) is plotted in Fig. 2. In fact, we find bz(0) = 0 and bz(1) = b. This effective Burgers vector differs
appreciably from the constant value b in the core region from r = 0 up to r ’ 6e (see Fig. 2). Therefore, the
core radius is given in quite a natural manner within gradient elasticity. Outside this core region the Burgers



Fig. 2. The effective Burgers vector for a screw dislocation: bz(r)/bz (full curve) and bð1Þz ðrÞ=bz (small dashed curve). The dashed curve
represents the classical component.
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vector reaches its constant value. In the limits c2 ! 0 and c1 ! e, we obtain in Eq. (3.20) the Burgers vector
calculated in first strain gradient elasticity (Lazar, 2003b)
bð1Þz ðrÞ ¼ bz 1� r
e
K1ðr=eÞ

n o
. ð3:22Þ
In Fig. 2, it can be seen that the difference between (3.21) and (3.22) is small.
For the dislocation density tensor of the screw dislocation we calculate
azz ¼
1

l
DF ¼ bz

2p
1

c21 � c22
K0ðr=c1Þ � K0ðr=c2Þ½ �. ð3:23Þ
At r = 0 the dislocation density of a single screw dislocation (3.23) has the maximum value
azz ¼
bz
2p

1

c21 � c22
ln
c1
c2
. ð3:24Þ
Thus, it is nonsingular. For c1 = c2 = c we obtain
azz ¼
bz
2p

r
2c3

K1ðr=cÞ. ð3:25Þ
At r = 0 the dislocation density of a single screw dislocation (3.25) has the maximum value
azz ¼
bz

2pe2
. ð3:26Þ
Therefore, it is nonsingular unlike the dislocation density of a screw dislocation calculated in first strain
gradient elasticity (c2 ! 0 and c1 ! e)
að1Þzz ¼ bz
2pe2

K0ðr=eÞ; ð3:27Þ
which is singular at r = 0. Eqs. (3.25) and (3.27) are plotted in Fig. 3. It is important to note that the elim-
ination of the singularity at r = 0 is a new important feature of second strain gradient elasticity.

3.3. Higher order stresses

In this section, we calculate the higher order stresses, like double and triple stresses, produced by a screw
dislocation.



Fig. 3. Dislocation density of a single screw dislocation: azz (full curve) and að1Þzz (small dashed curve) are given in units of bz/[2pe
2].
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3.3.1. Double stresses
The double stresses are given by
sðzxÞy ¼ �e2o2yyF ; sðzyÞx ¼ e2o2xxF ; sðzxÞx ¼ �sðzyÞy ¼ �e2o2xyF . ð3:28Þ
The result of the calculation is given in Cartesian coordinates as follows:
sðzyÞx ¼
lbze2

2p
y2 � x2

r4
1� 1

c21 � c22
c1rK1ðr=c1Þ � c2rK1ðr=c2Þ½ �

� �


þ x2

r2
1

c21 � c22
K0ðr=c1Þ � K0ðr=c2Þ½ �

�
; ð3:29Þ

sðzxÞy ¼ � lbze2

2p
x2 � y2

r4
1� 1

c21 � c22
c1rK1ðr=c1Þ � c2rK1ðr=c2Þ½ �

� �


þ y2

r2
1

c21 � c22
K0ðr=c1Þ � K0ðr=c2Þ½ �

�
; ð3:30Þ

sðzyÞy ¼ � lbze2

2p
xy
r4

2 1� 1

c21 � c22
c1rK1ðr=c1Þ � c2rK1ðr=c2Þ½ �

� �


�r2
1

c21 � c22
K0ðr=c1Þ � K0ðr=c2Þ½ �

�
; ð3:31Þ
and for c1 = c2 = c we obtain
sðzyÞx ¼
lbze2

2p
y2 � x2

r4
1� r2

2c2
K2ðr=cÞ

� �
þ x2

2r2c2
r
c
K1ðr=cÞ


 �
; ð3:32Þ

sðzxÞy ¼ � lbze2

2p
x2 � y2

r4
1� r2

2c2
K2ðr=cÞ

� �
þ y2

2r2c2
r
c
K1ðr=cÞ


 �
; ð3:33Þ

sðzyÞy ¼ � lbze2

2p
xy
r4

2 1� r2

2c2
K2ðr=cÞ

� �
� r3

2c3
K1ðr=cÞ


 �
. ð3:34Þ
It is quite interesting to observe that the double stresses are nonsingular in second strain gradient elasticity
unlike the double stresses calculated within the first strain gradient elasticity (Lazar and Maugin, in press)
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and first gradient micropolar elasticity (Lazar and Maugin, 2004a) which are singular at r = 0. In fact, in
second gradient elasticity two components of the double stresses have extremum values and two compo-
nents of the double stresses are zero at the dislocation line. In the case of c1 = c2, we find at r = 0:
sðzyÞx ¼ �sðzxÞy ¼
lbz
4p

; sðzyÞy ¼ �sðzxÞx ¼ 0. ð3:35Þ
The components of the double stress (3.32)–(3.34) are plotted in Fig. 4. It is obvious that the main contri-
bution of the double stresses comes from the dislocation core region. In the limit c2 ! 0, Eqs. (3.29)–(3.31)
convert to the double stresses in first strain gradient elasticity and, therefore, they become singular.

By means of the double stresses (3.29)–(3.31) and (3.32)–(3.34), we are able to give the expressions for the
elastic bend-twist tensor. Eventually, the elastic bend-twist tensor is given by
jxx ¼
1

2le2
sðzyÞx; jyy ¼ � 1

2le2
sðzxÞy ; jðxyÞ ¼

1

2le2
sðzyÞy ; jkk ¼

1

2
azz. ð3:36Þ
(a) (b)

(c) (d)

Fig. 4. Double stress of a screw dislocation: (a) s(zy)x, (b) �s(zx)y, (c) s(zy)y and (d) s(zx)x are given in units of lbz/[2p].
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In the limits c2 ! 0 and c1 ! 1/j, we recover the result given by Lazar (2003b). It is important to note that
all singularities of the elastic bend-twist which occur in first strain gradient elasticity (Lazar, 2003b) and in
micropolar elasticity (Minagawa, 1977) are removed in second strain gradient elasticity. All components of
the double stress tensor and of the elastic bend-twist tensor do not have a singularity and they behave like
1/r2 in the far field just like an electric dipole. Thus, the double force stress may be called dipole force stress.

3.3.2. Triple stresses

For the first time ever, we want to calculate the triple stress produced by a screw dislocation. The triple
stresses are given in terms of the stress function as follows:
sðzyÞðxxÞ ¼ c4o3xxxF ; sðzyÞðxyÞ ¼ �sðzxÞðxxÞ ¼ c4o3xxyF ; ð3:37Þ
sðzxÞðyyÞ ¼ �c4o3yyyF ; sðzyÞðyyÞ ¼ �sðzxÞðxyÞ ¼ c4o3xyyF . ð3:38Þ
Eventually, we obtain
sðzyÞðxxÞ ¼
lbzc4

2p
x
r6

x2 � 3y2
� �

2� r2
1

c21 � c22
K2ðr=c1Þ � K2ðr=c2Þ½ �

� �


�x2r2
1

c21 � c22

r
c1
K1ðr=c1Þ �

r
c2
K1ðr=c2Þ

� 
�
; ð3:39Þ

sðzxÞðyyÞ ¼ � lbzc4

2p
y
r6

y2 � 3x2
� �

2� r2
1

c21 � c22
K2ðr=c1Þ � K2ðr=c2Þ½ �

� �


�y2r2
1

c21 � c22

r
c1
K1ðr=c1Þ �

r
c2
K1ðr=c2Þ

� 
�
; ð3:40Þ

sðzyÞðyyÞ ¼ � lbzc4

2p
x
r6

x2 � 3y2
� �

2� r2
1

c21 � c22
K2ðr=c1Þ � K2ðr=c2Þ½ �

� �


þy2r2
1

c21 � c22

r
c1
K1ðr=c1Þ �

r
c2
K1ðr=c2Þ

� 
�
; ð3:41Þ

sðzyÞðxyÞ ¼ � lbzc4

2p
y
r6

y2 � 3x2
� �

2� r2
1

c21 � c22
K2ðr=c1Þ � K2ðr=c2Þ½ �

� �


þx2r2
1

c21 � c22

r
c1
K1ðr=c1Þ �

r
c2
K1ðr=c2Þ

� 
�
ð3:42Þ
and for the case of c1 = c2 = c we find
sðzyÞðxxÞ ¼
lbzc4

2p
x
r6

x2 � 3y2
� �

2� r2

c2
K2ðr=cÞ þ

1

2

r
c
K1ðr=cÞ

� 
� �
� x2

r4

2c4
K0ðr=cÞ


 �
; ð3:43Þ

sðzxÞðyyÞ ¼ � lbzc4

2p
y
r6

y2 � 3x2
� �

2� r2

c2
K2ðr=cÞ þ

1

2

r
c
K1ðr=cÞ

� 
� �
� y2

r4

2c4
K0ðr=cÞ


 �
; ð3:44Þ

sðzyÞðyyÞ ¼ � lbzc4

2p
x
r6

x2 � 3y2
� �

2� r2

c2
K2ðr=cÞ þ

1

2

r
c
K1ðr=cÞ

� 
� �
þ y2

r4

2c4
K0ðr=cÞ


 �
; ð3:45Þ

sðzyÞðxyÞ ¼ � lbzc4

2p
y
r6

y2 � 3x2
� �

2� r2

c2
K2ðr=cÞ þ

1

2

r
c
K1ðr=cÞ

� 
� �
þ x2

r4

2c4
K0ðr=cÞ


 �
. ð3:46Þ
The components (3.43)–(3.46) are plotted in Fig. 5. Thus, the triple stresses (3.39)–(3.42) and (3.43)–(3.46)
are zero at the dislocation line and have extremum values near the dislocation line (see Fig. 5). These extre-
mum values are located very close to the dislocation line. It is important to note that the triple stresses of
a screw dislocation which appear in second strain gradient elasticity are nonsingular. In the limit c2 ! 0,



(a)

(c)

(b)

(d)

Fig. 5. Triple stress of a screw dislocation: (a) s(zy)(xx), (b) �s(zx)(yy), (c) s(zy)(yy) and (d) s(zy)(xy) are given in units of lbze/[8p].
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Eqs. (3.39)–(3.42) become singular. In addition, they behave like 1/r3 in the far field just like an electric
quadrupole. Therefore, the triple force stress is a quadrupole force stress.
4. Edge dislocation

In this section, we investigate a straight edge dislocation in the framework of second gradient elasticity.
The dislocation line coincides with the z-axis and the Burgers vector is bx is parallel to the x-axis.

4.1. Solution in classical elasticity

The appropriate Airy stress function for a straight edge dislocation in classical elasticity is given by
v ¼ � lbx
2pð1� mÞ y ln r; ð4:1Þ
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where m is the Poisson ratio. In the case of plane strain, the stress function ansatz is given in terms of an Airy
stress function as follows:
r
�
xx ¼ o

2
yyv; r

�
yy ¼ o

2
xxv; r

�
xy ¼ �o

2
xyv; r

�
zz ¼ mðr� xx þ r

�
yyÞ. ð4:2Þ
Eventually, the �classical� stresses of an edge dislocation read
r
�
xx ¼ �A

yðy2 þ 3x2Þ
r4

; r
�
yy ¼ �A

yðy2 � x2Þ
r4

; r
�
xy ¼ A

xðx2 � y2Þ
r4

; r
�
zz ¼ �2mA

y
r2
; ð4:3Þ
where A = lbx/[2p(1 � m)]. Thus, every component of the stress has a 1/r-singularity at the dislocation line.

4.2. Solution in second strain gradient elasticity

For the stress in gradient elasticity we use a stress function ansatz for plane strain with the same struc-
ture as in classical elasticity
rxx ¼ o
2
yyf ; ryy ¼ o

2
xxf ; rxy ¼ �o

2
xyf ; rzz ¼ mðrxx þ ryyÞ; ð4:4Þ
where f is the new stress function occurring in second gradient elasticity. The stress function ansatz (4.4)
satisfies Eq. (2.57). If we use (2.34) and substituting (4.2), (4.1) and (4.4) into it, we obtain an inhomoge-
neous bi-Helmholtz equation for the stress function f:
1� e2Dþ c4DD
� �

f ¼ � lbx
2pð1� mÞ y ln r ð4:5Þ
and the factorized one
1� c21D
� �

1� c22D
� �

f ¼ � lbx
2pð1� mÞ y ln r; ð4:6Þ
where the inhomogeneous part is given in terms of the Airy stress function v. The solution of this equation
is given by (see Appendix C, Eq. (C.9):
f ¼ � lbx
2pð1� mÞ y ln r þ 2ðc21 þ c22Þ

r2
� 2

rðc21 � c22Þ
c31K1ðr=c1Þ � c32K1ðr=c2Þ
� 	
 �

ð4:7Þ
and in the limit c2 ! c1
f ¼ � lbx
2pð1� mÞ y ln r þ 4c2

r2
� 4c

r
K1ðr=cÞ � K0ðr=cÞ


 �
. ð4:8Þ
Due to the bi-Helmholtz equation (4.6), one might call the stress functions (4.7) and (4.8)—the bi-
Helmholtz modified Airy stress functions.

If we use the stress function (4.7), we calculate the elastic stress produced by an edge dislocation as
rxx ¼ � lbx
2pð1� mÞ

y
r4

ðy2 þ 3x2Þ þ 4ðc21 þ c22Þ
r2

ðy2 � 3x2Þ � 2y2

c21 � c22
c1rK1ðr=c1Þ � c2rK1ðr=c2Þ½ �




� 2ðy2 � 3x2Þ
c21 � c22

c21K2ðr=c1Þ � c22K2ðr=c2Þ
� 	�

; ð4:9Þ

ryy ¼ � lbx
2pð1� mÞ

y
r4

ðy2 � x2Þ � 4ðc21 þ c22Þ
r2

ðy2 � 3x2Þ � 2x2

c21 � c22
c1rK1ðr=c1Þ � c2rK1ðr=c2Þ½ �




þ 2ðy2 � 3x2Þ
c21 � c22

c21K2ðr=c1Þ � c22K2ðr=c2Þ
� 	�

; ð4:10Þ
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rxy ¼
lbx

2pð1� mÞ
x
r4

ðx2 � y2Þ � 4ðc21 þ c22Þ
r2

ðx2 � 3y2Þ � 2y2

c21 � c22
c1rK1ðr=c1Þ � c2rK1ðr=c2Þ½ �




þ 2ðx2 � 3y2Þ
c21 � c22

c21K2ðr=c1Þ � c22K2ðr=c2Þ
� 	�

; ð4:11Þ

rzz ¼ � lbxm
pð1� mÞ

y
r2

1� 1

c21 � c22
c1rK1ðr=c1Þ � c2rK1ðr=c2Þ½ �


 �
. ð4:12Þ
The trace of the stress tensor rkk = (rxx + ryy + rzz) is
rkk ¼ � lbxð1þ mÞ
pð1� mÞ

y
r2

1� 1

c21 � c22
½c1rK1ðr=c1Þ � c2rK1ðr=c2Þ�


 �
. ð4:13Þ
We find for the elastic strain of an edge dislocation
Exx ¼ � bx
4pð1� mÞ

y
r2

ð1� 2mÞ þ 2x2

r2
þ 4ðc21 þ c22Þ

r4
ðy2 � 3x2Þ




� 2ðy2 � mr2Þ
r2ðc21 � c22Þ

c1rK1ðr=c1Þ � c2rK1ðr=c2Þ½ � � 2ðy2 � 3x2Þ
r2ðc21 � c22Þ

c21K2ðr=c1Þ � c22K2ðr=c2Þ
� 	�

; ð4:14Þ

Eyy ¼ � bx
4pð1� mÞ

y
r2

ð1� 2mÞ � 2x2

r2
� 4ðc21 þ c22Þ

r4
ðy2 � 3x2Þ




� 2ðx2 � mr2Þ
r2ðc21 � c22Þ

c1rK1ðr=c1Þ � c2rK1ðr=c2Þ½ � þ 2ðy2 � 3x2Þ
r2ðc21 � c22Þ

c21K2ðr=c1Þ � c22K2ðr=c2Þ
� 	�

; ð4:15Þ

Exy ¼
bx

4pð1� mÞ
x
r4

ðx2 � y2Þ � 4ðc21 þ c22Þ
r2

ðx2 � 3y2Þ � 2y2

c21 � c22
c1rK1ðr=c1Þ � c2rK1ðr=c2Þ½ �




þ 2ðx2 � 3y2Þ
c21 � c22

c21K2ðr=c1Þ � c22K2ðr=c2Þ
� 	�

. ð4:16Þ
The dilatation is
Ekk ¼ � bxð1� 2mÞ
2pð1� mÞ

y
r2

1� 1

c21 � c22
c1rK1ðr=c1Þ � c2rK1ðr=c2Þ½ �


 �
. ð4:17Þ
Eqs. (4.9)–(4.17) are nonsingular. In fact, they are zero at r = 0 and have extremum values near the dislo-
cation line. In the limit c2 ! 0, we recover in Eqs. (4.9)–(4.17) the expressions calculated by Gutkin and
Aifantis (1999), Gutkin (2000), Lazar (2003a), Lazar (2003b), Lazar and Maugin (in press) in gradient elas-
ticity of Helmholtz type. In general, the extremum values of the stresses and strains depend on c2 and c1.
The stresses Eqs. (4.9)–(4.11) are plotted for c2 ! c1 in Fig. 6. Here, we do not give the corresponding
formulas in order to avoid too many long equations. But, it is not complicated to calculate the limits
for the Bessel functions as we did it in the previous section. For c1 = c2 = c, we have: jrxx(0,y)j ’
0.345lbx/[2p(1 � m)c] = 0.489lbx/[2p(1 � m)e] at jyj ’ 2.10c = 1.485e, jryy(0,y)j ’ 0.159lbx/[2p(1 � m)c] =
0.225lbx/[2p(1 � m)e] at jyj ’ 3.102c = 2.193e, jrxy(x, 0)j ’ 0.159lbx/[2p(1 � m)c] = 0.225lbx/[2p(1 � m)e]
at jxj ’ 3.102c = 2.193e, and jrzz(0,y)j ’ 0.249lbx/[p(1 � m)c] = 0.352lbx/[p(1 � m)e] at jyj ’ 2.324c =
1.643e. It can be seen that these stresses are smoother than the stresses obtained in first gradient elasticity
of Helmholtz type. In fact, in first gradient elasticity of Helmholtz type the extremum values are:
jrxx(0,y)j ’ 0.547lbx/[2p(1 � m)e] at jyj ’ 0.996e, jryy(0,y)j ’ 0.260lbx/[2p(1 � m)e] at jyj ’ 1.494e,
jrxy(x, 0)j ’ 0.260lbx/[2p(1 � m)e] at jxj ’ 1.494e, and jrzz(0,y)j ’ 0.399lbx/[p(1 � m)e] at jyj ’ 1.114e. In
addition, it is interesting to note that in the core region Eyy(0,y) is significantly smaller than Exx(0,y) similar
as in first gradient elasticity (see, e.g., Gutkin and Aifantis, 1997). They are plotted in Fig. 7.



(c)

(b)

(a)

Fig. 6. Stress of an edge dislocation: (a) rxx(0,y) and (b) ryy(0,y) (c) rxy(x,0) are given in units of lbx/[2p(1 � m)e]. The full curves,
small dashed curves and dashed curves, respectively, represent the stress fields in gradient elasticity of bi-Helmholtz type, gradient
elasticity of Helmholtz type and classical elasticity.
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Fig. 7. Strain components Exx(0,y)—(*) and Eyy(x, 0)—(**) are given in units of lbx/[4p(1 � m)e] and with m = 0.3 and c1 = c2. The
dashed curve represents the classical strain.
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The elastic distortion is given by
bxx ¼ Exx; ð4:18Þ
bxy ¼ Exy � xz; ð4:19Þ
byx ¼ Exy þ xz; ð4:20Þ
byy ¼ Eyy ; ð4:21Þ
where the elastic rotation, xz, is determined from the conditions:
axz ¼ oyExx þ oxðExy � xzÞ ¼ � 1

2l
ð2loxxz þ ð1� mÞoyDf Þ;

ayz ¼ oxEyy � oyðExy þ xzÞ ¼ � 1

2l
ð2loyxz � ð1� mÞoxDf Þ � 0.

ð4:22Þ
These conditions mean that the edge dislocation has a Burgers vector in x-direction and not in y-direction.
Eventually, we find for the elastic rotation
xz ¼ � bx
2p

x
r2

1� 1

c21 � c22
½c1rK1ðr=c1Þ � c2rK1ðr=c2Þ�


 �
. ð4:23Þ
The dislocation density tensor of an edge dislocation has the following form:
axz ¼
bx
2p

1

c21 � c22
½K0ðr=c1Þ � K0ðr=c2Þ�. ð4:24Þ
The effective Burgers vector of an edge dislocation is given by
bxðrÞ ¼
I
C

ðbxx dxþ bxy dyÞ ¼ bx 1� 1

c21 � c22
½c1rK1ðr=c1Þ � c2rK1ðr=c2Þ�


 �
. ð4:25Þ
Thus, the dislocation density (4.24) and the effective Burgers vector (4.25) of an edge dislocation have the
same form as the corresponding quantities (3.23) and (3.20) of a screw dislocation. Only the tensor com-
ponents are changed. Therefore, they are smooth and nonsingular even the dislocation density of a single
edge dislocation. In the limits c2 ! 0 and c1 ! 1/j, we recover in Eqs. (4.23)–(4.25) the formulas given by
Lazar (2003b).
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4.3. Higher order stresses

In this section, we calculate the double and triple stresses produced by an edge dislocation.

4.3.1. Double stresses
The double stresses of an edge dislocation are given in terms of the stress function f as derivatives of the

third-order according to:
sðyyÞx ¼ e2o3xxxf ; sðyyÞy ¼ �sðxyÞx ¼ e2o3xxyf ;

sðxxÞy ¼ e2o3yyyf ; sðxxÞx ¼ �sðxyÞy ¼ e2o3yyxf ;

sðzzÞx ¼ mðsðxxÞx þ sðyyÞxÞ;
sðzzÞy ¼ mðsðxxÞy þ sðyyÞyÞ;

ð4:26Þ
and we obtain
sðyyÞx ¼ � lbxe2

2pð1� mÞ
2xy
r6

ðx2 � 3y2Þ þ 24
c21 þ c22

r2
ðy2 � x2Þ � 3ðy4 � x4Þ

ðc21 � c22Þr
½c1K1ðr=c1Þ � c2K1ðr=c2Þ�




� 12ðy2 � x2Þ
c21 � c22

½c21K2ðr=c1Þ � c22K2ðr=c2Þ� þ
x2r2

c21 � c22
½K2ðr=c1Þ � K2ðr=c2Þ�

�
ð4:27Þ

sðxxÞx ¼ � lbxe2

2pð1� mÞ
2xy
r6

ðy2 � 3x2Þ þ 24
c21 þ c22

r2
ðx2 � y2Þ � 3ðx4 � y4Þ

ðc21 � c22Þr
c1K1ðr=c1Þ � c2K1ðr=c2Þ½ �




� 12ðx2 � y2Þ
c21 � c22

c21K2ðr=c1Þ � c22K2ðr=c2Þ
� 	

þ y2r2

c21 � c22
½K2ðr=c1Þ � K2ðr=c2Þ�

�
ð4:28Þ

sðxxÞy ¼ � lbxe2

2pð1� mÞ
1

r6
ð3x4 � 6x2y2 � y4Þ � 12

c21 þ c22
r2

ðx4 � 6x2y2 þ y4Þ



þ 2y4r2

c21 � c22
½K2ðr=c1Þ � K2ðr=c2Þ� þ

6ðx4 � 6x2y2 þ y4Þ
c21 � c22

½c21K2ðr=c1Þ � c22K2ðr=c2Þ�

� 12x2y2

c21 � c22
½c1rK1ðr=c1Þ � c2rK1ðr=c2Þ�

�
ð4:29Þ

sðyyÞy ¼
lbxe2

2pð1� mÞ
1

r6
ðx4 � 6x2y2 þ y4Þ � 12

c21 þ c22
r2

ðx4 � 6x2y2 þ y4Þ



� 2x2y2r2

c21 � c22
½K2ðr=c1Þ � K2ðr=c2Þ� þ

6ðx4 � 6x2y2 þ y4Þ
c21 � c22

½c21K2ðr=c1Þ � c22K2ðr=c2Þ�

þ 2ðx6 � 3x4y2 � 3x2y4 þ y6Þ
ðc21 � c22Þr

½c1K1ðr=c1Þ � c2K1ðr=c2Þ�
�

ð4:30Þ

sðzzÞx ¼
lbxme2

pð1� mÞ
xy
r4

2 1� 1

c21 � c22
c1rK1ðr=c1Þ � c2rK1ðr=c2Þ½ �

� �


�r2
1

c21 � c22
½K0ðr=c1Þ � K0ðr=c2Þ�

�
; ð4:31Þ

sðzzÞy ¼ � lbxme2

pð1� mÞ
x2 � y2

r4
1� 1

c21 � c22
c1rK1ðr=c1Þ � c2rK1ðr=c2Þ½ �

� �


þ y2

r2
1

c21 � c22
½K0ðr=c1Þ � K0ðr=c2Þ�

�
. ð4:32Þ
It is important to note that the double stresses of an edge dislocation are smooth and nonsingular in second
strain gradient elasticity unlike the double stresses calculated within first strain gradient elasticity (Lazar
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and Maugin, in press) and first gradient micropolar elasticity (Lazar and Maugin, 2004b) which have sin-
gularities at the dislocation line. In fact, the double stresses have extremum values at the defect line or are
zero at the dislocation line. The form of the double stresses of an edge dislocation is more complicated than
that one of a screw dislocation. Nevertheless, (4.32) and (4.31) have a similar form as (3.31) and (3.30). In
the limit c2 ! 0, Eqs. (4.27)–(4.32) become singular. In addition, the elastic bend-twist of an edge disloca-
tion is calculated as
Fig.
jzx ¼
bx
2p

x2 � y2

r4
1� 1

c21 � c22
½c1rK1ðr=c1Þ � c2rK1ðr=c2Þ�

� �
� x2

r2
1

c21 � c22
½K0ðr=c1Þ �K0ðr=c2Þ�


 �
; ð4:33Þ

jzy ¼
bx
2p

xy
r4

2 1� 1

c21 � c22
½c1rK1ðr=c1Þ � c2rK1ðr=c2Þ�

� �
� r2

1

c21 � c22
K0ðr=c1Þ �K0ðr=c2Þ½ �


 �
; ð4:34Þ
which is nonsingular. In the limits c2 ! 0 and c1 ! 1/j, we recover the results given by Lazar (2003b). All
components of the double stress tensor and of the elastic bend-twist tensor of an edge dislocation are non-
singular and they behave like 1/r2 in the far field just like an electric dipole (see Fig. 8).
(c)

(b)(a)

(d)

8. Double stress of an edge dislocation: (a) �s(yy)y, (b) �s(xx)y, (c) s(xx)x and (d) s(yy)x are given in units of lbx/[2p(1 � m)].
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4.3.2. Triple stresses

The triple stresses of an edge dislocation are given as derivatives of fourth-order of the stress function f:
sðyyÞðxxÞ ¼ c4o4xxxxf ; sðyyÞðxyÞ ¼ �sðxyÞðxxÞ ¼ c4o4xxxyf ;

sðxxÞðyyÞ ¼ c4o4yyyyf ; sðxxÞðyxÞ ¼ �sðxyÞðyyÞ ¼ c4o4yyyxf ;

sðyyÞðyyÞ ¼ sðxxÞðxxÞ ¼ �sðxyÞðxyÞ ¼ c4o4xxyyf ;

sðzzÞðxxÞ ¼ mðsðxxÞðxxÞ þ sðyyÞðxxÞÞ;

sðzzÞðyyÞ ¼ mðsðxxÞðyyÞ þ sðyyÞðyyÞÞ;

sðzzÞðxyÞ ¼ mðsðxxÞðxyÞ þ sðyyÞðxyÞÞ.

ð4:35Þ
The result of the calculation reads
sðxxÞðxyÞ ¼
lbxc4

2pð1� mÞ
2x
r8

3ðx4 � 6x2y2 þ y4Þ � 24
c21 þ c22

r2
ðx4 � 10x2y2 þ 5y4Þ




þ 3

c21 � c22
ðx6 � 9x4y2 � 5x2y4 þ 5y6Þ c1

r
K1ðr=c1Þ �

c2
r
K1ðr=c2Þ

h i

þ y4r2

c21 � c22

r
c1
K1ðr=c1Þ �

r
c2
K1ðr=c2Þ

� 

þ 6y2ðy4 � x4Þ

c21 � c22
½K2ðr=c1Þ � K2ðr=c2Þ�

þ 12

c21 � c22
ðx4 � 10x2y2 þ 5y4Þ c21K2ðr=c1Þ � c22K2ðr=c2Þ

� 	�
; ð4:36Þ

sðyyÞðxyÞ ¼ � lbxc4

2pð1� mÞ
2x
r8

ðx4 � 14x2y2 þ 9y4Þ � 24
c21 þ c22

r2
ðx4 � 10x2y2 þ 5y4Þ




þ 3

c21 � c22
ðx6 � 9x4y2 � 5x2y4 þ 5y6Þ c1

r
K1ðr=c1Þ �

c2
r
K1ðr=c2Þ

h i

� x2y2r2

c21 � c22

r
c1
K1ðr=c1Þ �

r
c2
K1ðr=c2Þ

� 


þ 1

c21 � c22
ðx6 � 7x4y2 � 5x2y4 þ 3y6Þ½K2ðr=c1Þ � K2ðr=c2Þ�

þ 12

c21 � c22
ðx4 � 10x2y2 þ 5y4Þ½c21K2ðr=c1Þ � c22K2ðr=c2Þ�

�
; ð4:37Þ

sðyyÞðxxÞ ¼
lbxc4

2pð1� mÞ
2y
r8

3ðx4 � 6x2y2 þ y4Þ � 24
c21 þ c22

r2
ð5x4 � 10x2y2 þ y4Þ




þ 3

c21 � c22
ð5x6 � 5x4y2 � 9x2y4 þ y6Þ c1

r
K1ðr=c1Þ �

c2
r
K1ðr=c2Þ

h i

þ x4r2

c21 � c22

r
c1
K1ðr=c1Þ �

r
c2
K1ðr=c2Þ

� 

þ 6x2ðx4 � y4Þ

c21 � c22
½K2ðr=c1Þ � K2ðr=c2Þ�

þ 12

c21 � c22
ð5x4 � 10x2y2 þ y4Þ c21K2ðr=c1Þ � c22K2ðr=c2Þ

� 	�
; ð4:38Þ
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sðyyÞðyyÞ ¼ � lbxc4

2pð1� mÞ
2y
r8

ð9x4 � 14x2y2 þ y4Þ � 24
c21 þ c22

r2
ð5x4 � 10x2y2 þ y4Þ




þ 3

c21 � c22
ð5x6 � 5x4y2 � 9x2y4 þ y6Þ c1

r
K1ðr=c1Þ �

c2
r
K1ðr=c2Þ

h i

� x2y2r2

c21 � c22

r
c1
K1ðr=c1Þ �

r
c2
K1ðr=c2Þ

� 


þ 1

c21 � c22
ð3x6 � 5x4y2 � 7x2y4 þ y6Þ½K2ðr=c1Þ � K2ðr=c2Þ�

þ 12

c21 � c22
ð5x4 � 10x2y2 þ y4Þ c21K2ðr=c1Þ � c22K2ðr=c2Þ

� 	�
; ð4:39Þ

sðxxÞðyyÞ ¼
lbxc4

2pð1� mÞ
2y
r8

ð15x4 � 10x2y2 � y4Þ � 24
c21 þ c22

r2
ð5x4 � 10x2y2 þ y4Þ




þ 3

c21 � c22
ð5x6 � 5x4y2 � 9x2y4 þ y6Þ c1

r
K1ðr=c1Þ �

c2
r
K1ðr=c2Þ

h i

þ y4r2

c21 � c22

r
c1
K1ðr=c1Þ �

r
c2
K1ðr=c2Þ

� 

� 2y2

c21 � c22
ð5x4 þ 4x2y2 � y4Þ K2ðr=c1Þ � K2ðr=c2Þ½ �

þ 12

c21 � c22
ð5x4 � 10x2y2 þ y4Þ½c21K2ðr=c1Þ � c22K2ðr=c2Þ�

�
ð4:40Þ
and
sðzzÞðyyÞ ¼ � lbxmc4

pð1� mÞ
y
r6

ðy2 � 3x2Þ 2� r2
1

c21 � c22
½K2ðr=c1Þ � K2ðr=c2Þ�

� �


�y2r2
1

c21 � c22

r
c1
K1ðr=c1Þ �

r
c2
K1ðr=c2Þ

� 
�
; ð4:41Þ

sðzzÞðxyÞ ¼
lbxmc4

pð1� mÞ
x
r6

ðx2 � 3y2Þ 2� r2
1

c21 � c22
½K2ðr=c1Þ � K2ðr=c2Þ�

� �


þy2r2
1

c21 � c22

r
c1
K1ðr=c1Þ �

r
c2
K1ðr=c2Þ

� 
�
; ð4:42Þ

sðzzÞðxxÞ ¼
lbxmc4

pð1� mÞ
y
r6

ðy2 � 3x2Þ 2� r2
1

c21 � c22
K2ðr=c1Þ � K2ðr=c2Þ½ �

� �


þx2r2
1

c21 � c22

r
c1
K1ðr=c1Þ �

r
c2
K1ðr=c2Þ

� 
�
. ð4:43Þ
We plotted the components (4.36)–(4.40) in Fig. 9. Even the triple stresses are nonsingular. The components
(4.41)–(4.43) are similar in the form as the components (3.40)–(3.42) of the triple stress of a screw disloca-
tion. The triple stresses behave like 1/r3 in the far field just like a quadrupole.



(c) (d)

(b)(a)

Fig. 9. Triple stress of an edge dislocation: (a) s(xx)(xy), (b) �s(xx)(yy), (c) s(yy)(xy) and (d) s(yy)(yy) are given in units of lbxe/[8p(1 � m)].
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5. Conclusions

In this paper, we proposed a theory of second strain gradient elasticity. This theory is a generalization of
first strain gradient elasticity. Such a theory contains higher order stresses like double and triple stresses.
We discussed the general case of second strain gradient elasticity in addition to a simplified one which is
an exceptional version. Such an exceptional case of second strain gradient elasticity is developed and used
in greater detail. This version has two gradient coefficients, only. In such a version the double stress and the
triple stress are given as the first and second gradients of the force stress multiplied by gradient coefficients.

The exceptional version can be connected with Eringen�s nonlocal elasticity of bi-Helmholtz type. There-
fore, the solutions for the force stresses are also solutions in nonlocal elasticity. As a consequence, the stres-
ses of screw and edge dislocations calculated in this paper in the framework of second strain gradient
elasticity of bi-Helmholtz type have the same form as the corresponding stress components found by Lazar
et al. (in press) in the theory of nonlocal elasticity of bi-Helmholtz type. Furthermore, we discussed the new
two-dimensional nonlocal kernel which is the Green function of the bi-Helmholtz equation. This kernel is
nonsingular in contrast to the two-dimensional kernel of the Helmholtz equation.
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Using the special version of second gradient elasticity, new exact analytical solutions for the stress,
strain, distortion, dislocation density and bend-twist tensors of a straight screw dislocation and a straight
edge dislocation have been found. These fields depend on the two gradient coefficients. The solutions have
no singularities unlike the corresponding solutions in classical elasticity. The elimination of the singularities
of the dislocation density and elastic bend-twist tensors is a new feature of second strain gradient elasticity
which is not possible by means of the first strain gradient elasticity. We have used the stress function meth-
od and found the stress functions for screw and edge dislocations. The strain and force stress are zero at
r = 0 and have their extreme values near the dislocation line like in first strain gradient elasticity. The stress
and strain tensors satisfy inhomogeneous bi-Helmholtz equations. The inhomogeneous parts are given
by the classical expressions. We have shown that the new solutions give in the limit from second strain
gradient elasticity of bi-Helmholtz type to first strain gradient elasticity of Helmholtz type the correct
expressions.

In addition, we have investigated the double and triple stresses caused by a screw dislocation and an edge
dislocation. Both quantities are nonsingular. Thus, singularities of the double stresses which appear in first
gradient theory are regularized and even the triple stresses do not have a singularity.

An important result in the framework of second-order gradient theory is that in the cases of screw and
edge dislocations all higher order stresses are nonsingular and it was possible to remove all singularities
which are still present in the first-order gradient theory. Of course, this is an unexpected and surprising re-
sult. Therefore, the second strain gradient theory is self-consistent and gives good physical results. Fortu-
nately, because all physical state quantities are smooth and nonsingular, it is not necessary to use a third
strain gradient theory which will be more complicated than the second strain gradient theory. The isotropic
second strain gradient theory and all the results, which we obtained, may be used for applications in crystals
which are nearly isotropic, e.g., aluminum.
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Appendix A. Green�s function of the bi-Helmholtz equation

In this appendix we want to calculate the two-dimensional Green function of the bi-Helmholtz equation.
The equation to be solved reads
ð1� c21DÞð1� c22DÞGðrÞ ¼ dðxÞdðyÞ. ðA:1Þ
The Helmholtz-operators ð1� c21DÞ and ð1� c22DÞ are commutative. We may set
ð1� c22DÞGðrÞ ¼ g ðA:2Þ
and
ð1� c21DÞg ¼ dðxÞdðyÞ. ðA:3Þ

For the infinite space, g is given by
g ¼ 1

2pc21
K0ðr=c1Þ; ðA:4Þ
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which is the two-dimensional Green function of the Helmholtz equation. Now we must solve the following
inhomogeneous Helmholtz equation:
ð1� c22DÞG ¼ 1

2pc21
K0ðr=c1Þ. ðA:5Þ
To solve (A.5), we make the following ansatz:
G ¼ C1K0ðr=c1Þ þ H ðA:6Þ

and obtain an equation for H
ð1� c22DÞH ¼ 1

2pc21
� c21 � c22

c21
C1

� �
K0ðr=c1Þ � 2pc22C1dðxÞdðyÞ. ðA:7Þ
Now we set
H ¼ C2K0ðr=c2Þ ðA:8Þ

and find
C1 ¼
1

2p
1

c21 � c22
; C2 ¼ �C1. ðA:9Þ
Finally, the solution of (A.1) is given by
GðrÞ ¼ 1

2p
1

c21 � c21
½K0ðr=c1Þ � K0ðr=c2Þ�. ðA:10Þ
Appendix B. Stress function of the bi-Helmholtz equation for a screw dislocation

We want to solve the following inhomogeneous bi-Helmholtz equation:
ð1� c21DÞð1� c22DÞF ¼ A ln r; A ¼ lbz
2p

. ðB:1Þ
To solve (B.1), we set
ð1� c22DÞF ¼ g ðB:2Þ

and
ð1� c21DÞg ¼ A ln r. ðB:3Þ

The nonsingular solution of (B.3) is given by
g ¼ Afln r þ K0ðr=c1Þg. ðB:4Þ

Substituting (B.4) into (B.2), we obtain
ð1� c22DÞF ¼ Afln r þ K0ðr=c1Þg. ðB:5Þ

In order to solve (B.5), we use the ansatz
F ¼ C1 ln r þ C2K0ðr=c1Þ þ F ð1Þ ðB:6Þ
and obtain the following equation for F(1):
ð1� c22DÞF ð1Þ ¼ ðA� C1Þ ln r þ A� c21 � c22
c21

C2

� �
K0ðr=c1Þ þ 2pc22ðC1 � C2ÞdðxÞdðyÞ. ðB:7Þ
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Now we set
F ð1Þ ¼ C3K0ðr=c2Þ ðB:8Þ
and get
0 ¼ ðA� C1Þ ln r þ A� c21 � c22
c21

C2

� �
K0ðr=c1Þ þ 2pc22ðC1 � C2 � C3ÞdðxÞdðyÞ. ðB:9Þ
Thus, we obtain for the coefficients
C1 ¼ A; C2 ¼ A
c21

c21 � c22
; C3 ¼ �A

c22
c21 � c22

. ðB:10Þ
Finally, the solution of (B.1) reads
F ¼ A ln r þ 1

c21 � c22
c21K0ðr=c1Þ � c22K0ðr=c2Þ
� 	
 �

. ðB:11Þ
It is interesting to note that (B.11) is the fundamental solution of the following PDE (bi-Helmholtz
Laplace equation):
ð1� c21DÞð1� c22DÞDF ¼ 2pAdðxÞdðyÞ; ðB:12Þ
and (B.4) is the fundamental solution of the PDE (Helmholtz Laplace equation)
ð1� c21DÞDg ¼ 2pAdðxÞdðyÞ; ðB:13Þ
since D ln r = 2pd(x)d(y).
Appendix C. Stress function of the bi-Helmholtz equation for an edge dislocation

Our special interest is the solution of the following inhomogeneous bi-Helmholtz equation:
ð1� c21DÞð1� c22DÞf ¼ Aoyðr2 ln rÞ; A ¼ � lbx
4pð1� mÞ . ðC:1Þ
In order to solve (C.1), we use the relations
ð1� c22DÞf ¼ g ðC:2Þ

and
ð1� c21DÞg ¼ Aoyðr2 ln rÞ. ðC:3Þ

The nonsingular solution of (C.3) reads (see, e.g., Lazar, 2003a)
g ¼ Aoyfr2 ln r þ 4c21ðln r þ K0ðr=c1ÞÞg. ðC:4Þ

If we substitute (C.4) into (C.2), we have
ð1� c22DÞf ¼ Aoyfr2 ln r þ 4c21ðln r þ K0ðr=c1ÞÞg. ðC:5Þ

We use the following ansatz:
f ¼ oyfr2 ln r þ C1 ln r þ C2K0ðr=c1Þ þ C3K0ðr=c2Þg ðC:6Þ
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and obtain
0 ¼ ð4c21 þ 4c22 � C1Þ þ 4c41 �
c21 � c22

c21
C2

� �
K0ðr=c1Þ þ 2pc22ðC1 þ C2 � C3ÞdðxÞdðyÞ; ðC:7Þ
which can be satisfied if every coefficient is zero. In this way, we find
C1 ¼ 4 c21 þ c22
� �

; C2 ¼ 4
c21

c21 � c22
; C3 ¼ �4

c22
c21 � c22

. ðC:8Þ
Finally, the solution of (C.1) reads
f ¼ Aoy r2 ln r þ 4ðc21 þ c22Þ ln r þ
4

c21 � c22
½c41K0ðr=c1Þ � c42K0ðr=c2Þ�


 �
. ðC:9Þ
In addition, we note that (C.9) is the fundamental solution of the following PDE (bi-Helmholtz bi-Laplace
equation):
ð1� c21DÞð1� c22DÞDDf ¼ 8pAoydðxÞdðyÞ ðC:10Þ

and (C.4) is the fundamental solution of the PDE (Helmholtz bi-Laplace equation)
ð1� c21DÞDDg ¼ 8pAoydðxÞdðyÞ; ðC:11Þ

since DD(r2ln r) = 8pd(x)d(y).
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